A 10-GHz 15-dB Four-Stage Distributed Amplifier in 0.18 μm CMOS Process

Author(s):  
K.K. Moez ◽  
M.I. Elmasry

2017 ◽  
Vol 26 (12) ◽  
pp. 1750191 ◽  
Author(s):  
Majid Babaeinik ◽  
Massoud Dousti ◽  
Mohammad Bagher Tavakoli

This study presents a CMOS distributed amplifier (DA) with pseudo differential amplifying that achieves DC-40[Formula: see text]GHz bandwidth (BW) in 0.18-[Formula: see text]m RF CMOS process. The DA with three-stage amplifying cells was proposed to improve the DA performance. The inter-stage was composed of pseudo differential amplifying for bandwidth extension. By incorporating the pseudo differential amplifier configuration and capacitor-less circuit in the stages, the DA provides average gain and high bandwidth. The simulation results showed that the DA has a S[Formula: see text] of 6.4[Formula: see text]dB, 3-dB BW from DC up to 40[Formula: see text]GHz. It also has a minimum noise figure (NF) of 4.27[Formula: see text]dB, one dB compression point (P[Formula: see text] of [Formula: see text]3.5[Formula: see text]dBm, a high reverse isolation S[Formula: see text] of less than [Formula: see text]15[Formula: see text]dB, an input return loss S[Formula: see text] and output return loss S[Formula: see text] of less than [Formula: see text]16 and [Formula: see text]12[Formula: see text]dB, respectively. It consumes 115[Formula: see text]mW and occupies a total active area of 0.27[Formula: see text]mm2.



Author(s):  
Jincheng Zhang ◽  
Tianxiang Wu ◽  
Yong Chen ◽  
Junyan Ren ◽  
Shunli Ma


2015 ◽  
Vol 14 (5) ◽  
pp. 5661-5686
Author(s):  
Essra E. Al-Bayati ◽  
R. S. Fyath

The design of distributed amplifiers (DAs) is one of the challenging aspects in emerging ultra high bit rate optical communication systems. This is especially important when implementation in submicron silicon complementary metal oxide semiconductor (CMOS) process is considered. This work presents a novel design scheme for DAs suitable for frontend amplification in 40 and 100 Gb/s optical receivers. The goal is to achieve high flat gain and low noise figure (NF) over the ultra wideband operating bandwidth (BW). The design scheme combines shifted second tire (SST) matrix configuration with cascode amplification cell configuration and uses m-derived technique. Performance investigation of the proposed DA architecture is carried out and the results are compared with that of other DA architectures reported in the literature. The investigation covers the gain and NF spectra when the DAs are implemented in 180, 130, 90, 65 and 45 CMOS standards.The simulation results reveal that the proposed DA architecture offers the highest gain with highest degree of flatness and low NF when compared with other DA configurations. Gain-BW products of 42772 and 21137 GHz are achieved when the amplifier is designed for 40 and 100 Gb/s operation, respectively, using 45 nm CMOS standard. Thesimulation is performed using AWR Microwave Office (version 10).



2018 ◽  
Vol 138 (1) ◽  
pp. 41-49
Author(s):  
Kazuma Igarashi ◽  
Yoshimasa Minami ◽  
Nobuhiko Nakano


2003 ◽  
Vol 766 ◽  
Author(s):  
J. Gambino ◽  
T. Stamper ◽  
H. Trombley ◽  
S. Luce ◽  
F. Allen ◽  
...  

AbstractA trench-first dual damascene process has been developed for fat wires (1.26 μm pitch, 1.1 μm thickness) in a 0.18 μm CMOS process with copper/fluorosilicate glass (FSG) interconnect technology. The process window for the patterning of vias in such deep trenches depends on the trench depth and on the line width of the trench, with the worse case being an intermediate line width (lines that are 3X the via diameter). Compared to a single damascene process, the dual damascene process has comparable yield and reliability, with lower via resistance and lower cost.



2009 ◽  
Vol E92-C (2) ◽  
pp. 258-268 ◽  
Author(s):  
Ying-Zu LIN ◽  
Soon-Jyh CHANG ◽  
Yen-Ting LIU
Keyword(s):  




Author(s):  
Jorge Pérez Bailón ◽  
Jaime Ramírez-Angulo ◽  
Belén Calvo ◽  
Nicolás Medrano

This paper presents a Variable Gain Amplifier (VGA) designed in a 0.18 μm CMOS process to operate in an impedance sensing interface. Based on a transconductance-transimpedance (TC-TI) approach with intermediate analog-controlled current steering, it exhibits a gain ranging from 5 dB to 38 dB with a constant bandwidth around 318 kHz, a power consumption of 15.5 μW at a 1.8 V supply and an active area of 0.021 mm2.



Author(s):  
E. Widener ◽  
S. Tatti ◽  
P. Schani ◽  
S. Crown ◽  
B. Dunnigan ◽  
...  

Abstract A new 0.5 um 1 Megabit SRAM which employed a double metal, triple poly CMOS process with Tungsten plug metal to poly /silicon contacts was introduced. During burn-in of this product, high currents, apparently due to electrical overstress, were experienced. Electrical analysis showed abnormal supply current characteristics at high voltages. Failure analysis identified the sites of the high currents of the bum-in rejects and discovered cracks in the glue layer prior to Tungsten deposition as the root cause of the failure. The glue layer cracks allowed a reaction with the poly/silicon, causing opens at the bottom of contacts. These floating nodes caused high currents and often latch-up during burn-in. Designed experiments in the wafer fab identified an improved glue layer process, which has been implemented. The new process shows improvement in burn in performance as well as outgoing product quality.



2017 ◽  
Vol MCSP2017 (01) ◽  
pp. 7-10 ◽  
Author(s):  
Subhashree Rath ◽  
Siba Kumar Panda

Static random access memory (SRAM) is an important component of embedded cache memory of handheld digital devices. SRAM has become major data storage device due to its large storage density and less time to access. Exponential growth of low power digital devices has raised the demand of low voltage low power SRAM. This paper presents design and implementation of 6T SRAM cell in 180 nm, 90 nm and 45 nm standard CMOS process technology. The simulation has been done in Cadence Virtuoso environment. The performance analysis of SRAM cell has been evaluated in terms of delay, power and static noise margin (SNM).



Sign in / Sign up

Export Citation Format

Share Document