Research on the electrical performance of BGA package in RL application

Author(s):  
Wang kai ◽  
Dong zhihong
2018 ◽  
Vol 2018 (1) ◽  
pp. 000180-000185
Author(s):  
Tony Tang ◽  
Bridger Wray ◽  
Rajen Murugan

Abstract In this paper we detail the system (viz. silicon-package-pcb) electrical co-design of a 130nm BiCMOS high-speed (25Gbps) 4-channel multi-rate retimer, packaged in a small 6-mm × 6-mm FC BGA package, with integrated advanced signal conditioning circuitries. Electrical optimization of the silicon-package-pcb over the high speed channels, to achieve desired performance, was achieved through a coupled circuit-to-electromagnetic co-design modeling and simulation methodology. Key figure of merits for system electrical performance (viz. insertion loss, return loss, crosstalk/isolation, jitter, and power supply inductance and resistance parasitics, among others) are modeled and analyzed. Laboratory measurements on a retimer are presented that validate the integrity of the modeling methodology. Good correlation between modeling methodology and laboratory measurements is achieved.


2013 ◽  
Vol 2013 (1) ◽  
pp. 000478-000483
Author(s):  
Burton Carpenter ◽  
Boon Yew Low ◽  
Leo M. Higgins ◽  
Sriram Neelakantan ◽  
Robert Wenzel ◽  
...  

Next-generation processors continue to demand more thermal and electrical performance from the package. Frequently, devices are designed into Flip Chip (FC) packages where the previous generations were in Wire Bond (WB) because FC typically provides superior thermal dissipation and lower package electrical parasitics than WB packages. However, FC packages usually have higher costs for mid-range IO (500–800). An Enhanced WB BGA package has been designed with improved thermal and electrical performance compared to the industry standard TEPBGA-2 (Thermally Enhanced PBGA type 2). The 500μm barrier of mold compound between the die and heatspreader in the TEPBGA-2 is a major impediment to heat flow out of the package. By contrast, the Enhanced WB package uses post-mold attachment of a heat spreader that is adhesively bonded to the mold cap and thermally coupled to the die using a 40μm TIM (thermal interface material). Improvements to substrate design rules and the die attach process that enabled the Enhanced WB design to shorten bond wires by 40% and improved electrical performance. Package thermal resistance, Theta-Ja, was verified by simulation and measurement to be 3C°/W lower than TEPBGA-2, that dissipates up to 15W in some end-use applications, approximately 2× the performance of TEPBGA-2. DDR set-up and hold time showed 30ps improvement by both simulation and measurement. This paper will present the package design, thermal and electrical simulation and measurement results.


Author(s):  
L. M. Gignac ◽  
K. P. Rodbell

As advanced semiconductor device features shrink, grain boundaries and interfaces become increasingly more important to the properties of thin metal films. With film thicknesses decreasing to the range of 10 nm and the corresponding features also decreasing to sub-micrometer sizes, interface and grain boundary properties become dominant. In this regime the details of the surfaces and grain boundaries dictate the interactions between film layers and the subsequent electrical properties. Therefore it is necessary to accurately characterize these materials on the proper length scale in order to first understand and then to improve the device effectiveness. In this talk we will examine the importance of microstructural characterization of thin metal films used in semiconductor devices and show how microstructure can influence the electrical performance. Specifically, we will review Co and Ti silicides for silicon contact and gate conductor applications, Ti/TiN liner films used for adhesion and diffusion barriers in chemical vapor deposited (CVD) tungsten vertical wiring (vias) and Ti/AlCu/Ti-TiN films used as planar interconnect metal lines.


2020 ◽  
Vol 91 (3) ◽  
pp. 30201
Author(s):  
Hang Yu ◽  
Jianlin Zhou ◽  
Yuanyuan Hao ◽  
Yao Ni

Organic thin film transistors (OTFTs) based on dioctylbenzothienobenzothiophene (C8BTBT) and copper (Cu) electrodes were fabricated. For improving the electrical performance of the original devices, the different modifications were attempted to insert in three different positions including semiconductor/electrode interface, semiconductor bulk inside and semiconductor/insulator interface. In detail, 4,4′,4′′-tris[3-methylpheny(phenyl)amino] triphenylamine (m-MTDATA) was applied between C8BTBTand Cu electrodes as hole injection layer (HIL). Moreover, the fluorinated copper phthalo-cyanine (F16CuPc) was inserted in C8BTBT/SiO2 interface to form F16CuPc/C8BTBT heterojunction or C8BTBT bulk to form C8BTBT/F16CuPc/C8BTBT sandwich configuration. Our experiment shows that, the sandwich structured OTFTs have a significant performance enhancement when appropriate thickness modification is chosen, comparing with original C8BTBT devices. Then, even the low work function metal Cu was applied, a normal p-type operate-mode C8BTBT-OTFT with mobility as high as 2.56 cm2/Vs has been fabricated.


2002 ◽  
Vol 716 ◽  
Author(s):  
Yi-Mu Lee ◽  
Yider Wu ◽  
Joon Goo Hong ◽  
Gerald Lucovsky

AbstractConstant current stress (CCS) has been used to investigate the Stress-Induced Leakage Current (SILC) to clarify the influence of boron penetration and nitrogen incorporation on the breakdown of p-channel devices with sub-2.0 nm Oxide/Nitride (O/N) and oxynitride dielectrics prepared by remote plasma enhanced CVD (RPECVD). Degradation of MOSFET characteristics correlated with soft breakdown (SBD) and hard breakdown (HBD), and attributed to the increased gate leakage current are studied. Gate voltages were gradually decreased during SBD, and a continuous increase in SILC at low gate voltages between each stress interval, is shown to be due to the generation of positive traps which are enhanced by boron penetration. Compared to thermal oxides, stacked O/N and oxynitride dielectrics with interface nitridation show reduced SILC due to the suppression of boron penetration and associated positive trap generation. Devices stressed under substrate injection show harder breakdown and more severe degradation, implying a greater amount of the stress-induced defects at SiO2/substrate interface. Stacked O/N and oxynitride devices also show less degradation in electrical performance compared to thermal oxide devices due to an improved Si/SiO2 interface, and reduced gate-to-drain overlap region.


2003 ◽  
Vol 762 ◽  
Author(s):  
H. Águas ◽  
L. Pereira ◽  
A. Goullet ◽  
R. Silva ◽  
E. Fortunato ◽  
...  

AbstractIn this work we present results of a study performed on MIS diodes with the following structure: substrate (glass) / Cr (2000Å) / a-Si:H n+ (400Å) / a-Si:H i (5500Å) / oxide (0-40Å) / Au (100Å) to determine the influence of the oxide passivation layer grown by different techniques on the electrical performance of MIS devices. The results achieved show that the diodes with oxides grown using hydrogen peroxide present higher rectification factor (2×106)and signal to noise (S/N) ratio (1×107 at -1V) than the diodes with oxides obtained by the evaporation of SiO2, or by the chemical deposition of SiO2 by plasma of HMDSO (hexamethyldisiloxane), but in the case of deposited oxides, the breakdown voltage is higher, 30V instead of 3-10 V for grown oxides. The ideal oxide thickness, determined by spectroscopic ellipsometry, is dependent on the method used to grow the oxide layer and is in the range between 6 and 20 Å. The reason for this variation is related to the degree of compactation of the oxide produced, which is not relevant for applications of the diodes in the range of ± 1V, but is relevant when high breakdown voltages are required.


2003 ◽  
Vol 771 ◽  
Author(s):  
Michael C. Hamilton ◽  
Sandrine Martin ◽  
Jerzy Kanicki

AbstractWe have investigated the effects of white-light illumination on the electrical performance of organic polymer thin-film transistors (OP-TFTs). The OFF-state drain current is significantly increased, while the drain current in the strong accumulation regime is relatively unaffected. At the same time, the threshold voltage is decreased and the subthreshold slope is increased, while the field-effect mobility of the charge carriers is not affected. The observed effects are explained in terms of the photogeneration of free charge carriers in the channel region due to the absorbed photons.


Sign in / Sign up

Export Citation Format

Share Document