A low power AES-GCM authenticated encryption core in 65nm SOTB CMOS process

Author(s):  
Van-Phuc Hoang ◽  
Van-Tinh Nguyen ◽  
Anh-Thai Nguyen ◽  
Cong-Kha Pham
Author(s):  
Dao Van Lan ◽  
Nguyen Anh Thai ◽  
Hoang Van Phuc

This paper presents a low area, low power AES-CCM authenticated encryption IP core with silicon demonstration in 180nm standard CMOS process. The proposed AES-CCM core combines a low area 8-bit single S-box AES encryption core, improved iterative structure and other optimized circuits. The implementation results show that the proposed AES-CCM core achieves very high resource efficiency with 6.5 kgates GE and the low power consumption of 11.6 µW/MHz while meeting the requirement of the operation speed for many applications including IEEE 802.15.6 WBANs. The detail implementation and optimization results are also presented and discussed.


2017 ◽  
Vol MCSP2017 (01) ◽  
pp. 7-10 ◽  
Author(s):  
Subhashree Rath ◽  
Siba Kumar Panda

Static random access memory (SRAM) is an important component of embedded cache memory of handheld digital devices. SRAM has become major data storage device due to its large storage density and less time to access. Exponential growth of low power digital devices has raised the demand of low voltage low power SRAM. This paper presents design and implementation of 6T SRAM cell in 180 nm, 90 nm and 45 nm standard CMOS process technology. The simulation has been done in Cadence Virtuoso environment. The performance analysis of SRAM cell has been evaluated in terms of delay, power and static noise margin (SNM).


Author(s):  
Kirill D. Liubavin ◽  
Igor V. Ermakov ◽  
Alexander Y. Losevskoy ◽  
Andrey V. Nuykin ◽  
Alexander S. Strakhov
Keyword(s):  
Rfid Tag ◽  

Electronics ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 889
Author(s):  
Xiaoying Deng ◽  
Peiqi Tan

An ultra-low-power K-band LC-VCO (voltage-controlled oscillator) with a wide tuning range is proposed in this paper. Based on the current-reuse topology, a dynamic back-gate-biasing technique is utilized to reduce power consumption and increase tuning range. With this technique, small dimension cross-coupled pairs are allowed, reducing parasitic capacitors and power consumption. Implemented in SMIC 55 nm 1P7M CMOS process, the proposed VCO achieves a frequency tuning range of 19.1% from 22.2 GHz to 26.9 GHz, consuming only 1.9 mW–2.1 mW from 1.2 V supply and occupying a core area of 0.043 mm2. The phase noise ranges from −107.1 dBC/HZ to −101.9 dBc/Hz at 1 MHz offset over the whole tuning range, while the total harmonic distortion (THD) and output power achieve −40.6 dB and −2.9 dBm, respectively.


Electronics ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 805
Author(s):  
Shi Zuo ◽  
Jianzhong Zhao ◽  
Yumei Zhou

This article presents a low power digital controlled oscillator (DCO) with an ultra low power duty cycle correction (DCC) scheme. The DCO with the complementary cross-coupled topology uses the controllable tail resistor to improve the tail current efficiency. A robust duty cycle correction (DCC) scheme is introduced to replace self-biased inverters to save power further. The proposed DCO is implemented in a Semiconductor Manufacturing International Corporation (SMIC) 40 nm CMOS process. The measured phase noise at room temperature is −115 dBc/Hz at 1 MHz offset with a dissipation of 210 μμW at an oscillating frequency of 2.12 GHz, and the resulin figure-of-merit is s −189 dBc/Hz.


Sensors ◽  
2021 ◽  
Vol 21 (7) ◽  
pp. 2260
Author(s):  
Khuram Shehzad ◽  
Deeksha Verma ◽  
Danial Khan ◽  
Qurat Ul Ain ◽  
Muhammad Basim ◽  
...  

A low power 12-bit, 20 MS/s asynchronously controlled successive approximation register (SAR) analog-to-digital converter (ADC) to be used in wireless access for vehicular environment (WAVE) intelligent transportation system (ITS) sensor based application is presented in this paper. To optimize the architecture with respect to power consumption and performance, several techniques are proposed. A switching method which employs the common mode charge recovery (CMCR) switching process is presented for capacitive digital-to-analog converter (CDAC) part to lower the switching energy. The switching technique proposed in our work consumes 56.3% less energy in comparison with conventional CMCR switching method. For high speed operation with low power consumption and to overcome the kick back issue in the comparator part, a mutated dynamic-latch comparator with cascode is implemented. In addition, to optimize the flexibility relating to the performance of logic part, an asynchronous topology is employed. The structure is fabricated in 65 nm CMOS process technology with an active area of 0.14 mm2. With a sampling frequency of 20 MS/s, the proposed architecture attains signal-to-noise distortion ratio (SNDR) of 65.44 dB at Nyquist frequency while consuming only 472.2 µW with 1 V power supply.


2021 ◽  
Vol 11 (2) ◽  
pp. 19
Author(s):  
Francesco Centurelli ◽  
Riccardo Della Sala ◽  
Pietro Monsurrò ◽  
Giuseppe Scotti ◽  
Alessandro Trifiletti

In this paper, we present a novel operational transconductance amplifier (OTA) topology based on a dual-path body-driven input stage that exploits a body-driven current mirror-active load and targets ultra-low-power (ULP) and ultra-low-voltage (ULV) applications, such as IoT or biomedical devices. The proposed OTA exhibits only one high-impedance node, and can therefore be compensated at the output stage, thus not requiring Miller compensation. The input stage ensures rail-to-rail input common-mode range, whereas the gate-driven output stage ensures both a high open-loop gain and an enhanced slew rate. The proposed amplifier was designed in an STMicroelectronics 130 nm CMOS process with a nominal supply voltage of only 0.3 V, and it achieved very good values for both the small-signal and large-signal Figures of Merit. Extensive PVT (process, supply voltage, and temperature) and mismatch simulations are reported to prove the robustness of the proposed amplifier.


Sign in / Sign up

Export Citation Format

Share Document