scholarly journals A Low-Power 12-Bit 20 MS/s Asynchronously Controlled SAR ADC for WAVE ITS Sensor Based Applications

Sensors ◽  
2021 ◽  
Vol 21 (7) ◽  
pp. 2260
Author(s):  
Khuram Shehzad ◽  
Deeksha Verma ◽  
Danial Khan ◽  
Qurat Ul Ain ◽  
Muhammad Basim ◽  
...  

A low power 12-bit, 20 MS/s asynchronously controlled successive approximation register (SAR) analog-to-digital converter (ADC) to be used in wireless access for vehicular environment (WAVE) intelligent transportation system (ITS) sensor based application is presented in this paper. To optimize the architecture with respect to power consumption and performance, several techniques are proposed. A switching method which employs the common mode charge recovery (CMCR) switching process is presented for capacitive digital-to-analog converter (CDAC) part to lower the switching energy. The switching technique proposed in our work consumes 56.3% less energy in comparison with conventional CMCR switching method. For high speed operation with low power consumption and to overcome the kick back issue in the comparator part, a mutated dynamic-latch comparator with cascode is implemented. In addition, to optimize the flexibility relating to the performance of logic part, an asynchronous topology is employed. The structure is fabricated in 65 nm CMOS process technology with an active area of 0.14 mm2. With a sampling frequency of 20 MS/s, the proposed architecture attains signal-to-noise distortion ratio (SNDR) of 65.44 dB at Nyquist frequency while consuming only 472.2 µW with 1 V power supply.

VLSI technology become one of the most significant and demandable because of the characteristics like device portability, device size, large amount of features, expenditure, consistency, rapidity and many others. Multipliers and Adders place an important role in various digital systems such as computers, process controllers and signal processors in order to achieve high speed and low power. Two input XOR/XNOR gate and 2:1 multiplexer modules are used to design the Hybrid Full adders. The XOR/XNOR gate is the key punter of power included in the Full adder cell. However this circuit increases the delay, area and critical path delay. Hence, the optimum design of the XOR/XNOR is required to reduce the power consumption of the Full adder Cell. So a 6 New Hybrid Full adder circuits are proposed based on the Novel Full-Swing XOR/XNOR gates and a New Gate Diffusion Input (GDI) design of Full adder with high-swing outputs. The speed, power consumption, power delay product and driving capability are the merits of the each proposed circuits. This circuit simulation was carried used cadence virtuoso EDA tool. The simulation results based on the 90nm CMOS process technology model.


2021 ◽  
Author(s):  
Lorenzo De Marinis ◽  
Alessandro Catania ◽  
Piero Castoldi ◽  
Giampiero Contestabile ◽  
Paolo Bruschi ◽  
...  

In the modern era of artificial intelligence, increasingly sophisticated artificial neural networks (ANNs) are implemented, which pose challenges in terms of execution speed and power consumption. To tackle this problem, recent research on reduced-precision ANNs opened the possibility to exploit analog hardware for neuromorphic acceleration. In this scenario, photonic-electronic engines are emerging as a short-medium term solution to exploit the high speed and inherent parallelism of optics for linear computations needed in ANN, while resorting to electronic circuitry for signal conditioning and memory storage. In this paper we introduce a precision-scalable integrated photonic-electronic multiply-accumulate neuron, namely PEMAN. The proposed device relies on (i) an analog photonic engine to perform reduced-precision multiplications at high speed and low power, and (ii) an electronic front-end for accumulation and application of the nonlinear activation function by means of a nonlinear encoding in the analog-to-digital converter (ADC). The device, based on the iSiPP50G SOI process for the photonic engine and a commercial 28 nm CMOS process for the electronic front end, has been numerically validated through cosimulations to perform multiply-accumulate operations (MAC). PEMAN exhibits a multiplication accuracy of 6.1 ENOB up to 10 GMAC/s, while it can perform computations up to 56 GMAC/s with a reduced accuracy down to 2.1 ENOB. The device can trade off speed with resolution and power consumption, it outperforms its analog electronics counterparts both in terms of speed and power consumption, and brings substantial improvements also compared to a leading GPU.


2022 ◽  
Vol 17 ◽  
pp. 1-15
Author(s):  
G. Vasudeva ◽  
B. V. Uma

Successive Approximation Register (SAR) Analog to Digital Converter (ADC) architecture comprises of sub modules such as comparator, Digital to Analog Converter and SAR logic. Each of these modules imposes challenges as the signal makes transition from analog to digital and vice-versa. Design strategies for optimum design of circuits considering 22nm FinFET technology meeting area, timing, power requirements and ADC metrics is presented in this work. Operational Transconductance Amplifier (OTA) based comparator, 12-bit two stage segmented resistive string DAC architecture and low power SAR logic is designed and integrated to form the ADC architecture with maximum sampling rate of 1 GS/s. Circuit schematic is captured in Cadence environment with optimum geometrical parameters and performance metrics of the proposed ADC is evaluated in MATLAB environment. Differential Non Linearity and Integral Non Linearity metrics for the 12-bit ADC is limited to +1.15/-1 LSB and +1.22/-0.69 LSB respectively. ENOB of 10.1663 with SNR of 62.9613 dB is achieved for the designed ADC measured for conversion of input signal of 100 MHz with 20dB noise. ADC with sampling frequency upto 1 GSps is designed in this work with low power dissipation less than 10 mW.


2011 ◽  
Vol 20 (01) ◽  
pp. 15-27 ◽  
Author(s):  
XIAN TANG ◽  
KONG PANG PUN

A novel switched-current successive approximation ADC is presented in this paper with high speed and low power consumption. The proposed ADC contains a new high-accuracy and power-efficient switched-current S/H circuit and a speed-improved current comparator. Designed and simulated in a 0.18-μm CMOS process, this 8-bit ADC achieves 46.23 dB SNDR at 1.23 MS/s consuming 73.19 μW under 1.2 V voltage supply, resulting in an ENOB of 7.38-bit and an FOM of 0.357 pJ/Conv.-step.


Author(s):  
Mohd Tafir Mustaffa

Comparator is one of the main blocks that play a vital task in the performance of analog to digital converters (ADC) in all modern technology devices. High-speed devices with low voltage and low power are considered essential for industrial applications. The design of a low-power comparator with high speed is required to accomplish the requirements mostly in electronic devices that are necessary for high-speed ADCs. However, a high-speed device that leads the scaling down of CMOS process technology will consume more power. Thus, power reduction techniques such as multi-threshold super cut-off stack (MTSCStack), dual-threshold transistor stacking (DTTS), a bulk-driven, and a bulk-driven differential pair were studied in this work. This study aims to find and build the combination of these techniques to produce a comparator that can operate in low power without compromising existing performance using the 0.13-µm CMOS process. A comparator with a combination of MTSCStack, DTTS, and NMOS bulk-driven differential pair shows the most promising result of 6.29 µW for static power, 17.15 µW for dynamic power, and 23.44 µW for total power.


The present paper proposes a high speed and low power consumption by travelling novel XOR and XNOR gates. The present circuit consist optimized power intakeas well asdelay due to smallamount produced capacitance and power dissipation for low short circuit. Here we utilize 6 new hybrid 1 bit full adder circuitthat produces to and fro XOR/XNOR gates. Here the present circuit has its own advantages like rapidity, power consumption and delay in power product, dynamic capability and so on. Here we proposed signals like HSPICE, Cadence simulations for investigating the performance results which are based on 65-nm CMOS process technical models that indicate high speed and power against FA signals. So here we propose a novel new transistor sizing method that optimizes the PDP circuits. The present circuit investigates on various supply terms of variations like threshold voltages, size of transistors, input noise and output capacitance by utilizing numerical computation particle swam optimization algorithm for achieving desired value in optimum PDP with few iterations


2018 ◽  
Vol 7 (2.16) ◽  
pp. 38
Author(s):  
Anshu Gupta ◽  
Lalita Gupta ◽  
R K. Baghel

A second-order sigma delta modulator that uses an operational transconductance amplifier as integrator and latch comparator as quantizer. The proposed technique where a low power high gain OTA is used as integrator and another circuit called dynamic latch comparator with two tail transistors and two controlling switches are used to achieve high speed, low power and high resolution in second order delta sigma modulator. It enhances the power efficiency and compactness of the modulator by implementing these blocks as sub modules. A second order modulator has been designed to justify the effectiveness of the proposed design. Technology 180nm CMOS process is used to implement complete second order continuous time sigma delta modulator.  We introduce the sub threshold three stage OTA, which is a way of achieving low distortion operation with input referred noise at 1 KHz is equal to the 2.2647pV/   and with low power consumption of 296.72nW.  A high-speed, low-voltage and a low-power Double-Tail dynamic comparator is also proposed. The proposed structure is contrasted with past dynamic comparators. In this paper, the comparator’s delay will be investigated and systematic analysis are inferred. a novel comparator using two tail transistor is proposed, here circuitry of a customized comparator having two tail is changed for low power dissipation and also it operates fast at little supply voltages. By maintaining the outline and by including couple of transistors, during the regeneration strengthening of positive feedback can be maintained, this results in amazingly diminished delay parameter. It is investigated that in proposed design structure of comparator using two tail transistors, power consumption is reduced and delay time is also diminished to a great extent. The proposed comparator is having maximum clock frequency that is possibly expanded up to 1GHz at voltages of 1 V whereas it is dissipating 10.99 µW of power, individually. By using sub threshold three stage OTA and dynamic standard two tail latch comparator, designed second order sigma delta ADC will consume 29.95µW of power.


2014 ◽  
Vol 23 (02) ◽  
pp. 1450026 ◽  
Author(s):  
REZA INANLOU ◽  
MOHAMMAD YAVARI

In this paper, a 10-bit 0.5 V 100 kS/s successive approximation register (SAR) analog-to-digital converter (ADC) with a new fully dynamic rail-to-rail comparator is presented. The proposed comparator enhances the input signal range to the rail-to-rail mode, and hence, improves the signal-to-noise ratio (SNR) of the ADC in low supply voltages. The effect of the latch offset voltage is reduced by providing a higher voltage gain in the regenerative latch. To reduce the ADC power consumption further, the binary-weighted capacitive array with an attenuation capacitor (BWA) is employed as the digital-to-analog converter (DAC) in this design. The ADC is designed and simulated in a 90 nm CMOS process with a single 0.5 V power supply. Spectre simulation results show that the average power consumption of the proposed ADC is about 400 nW and the peak signal-to-noise plus distortion ratio (SNDR) is 56 dB. By considering 10% increase in total ADC power consumption due to the parasitics and a loss of 0.22 LSB in ENOB due to the DAC capacitors mismatch, the achieved figure of merit (FoM) is 11.4 fJ/conversion-step.


Author(s):  
Agung Setiabudi ◽  
Hiroki Tamura ◽  
Koichi Tanno

<p>A new high speed, low pedestal error bootstrapped CMOS sample and hold (S/H) circuit is proposed for high speed analog-to-digital converter (ADC). The proposed circuit is made up of CMOS transmission gate (TG) switch and two new bootstrap circuits for each transistor in TG switch. Both TG switch and bootstrap circuits are used to decrease channel charge injection and on-resistance input signal dependency. In result, distortion can be reduced. The decrease of channel charge injection input signal dependency also makes the minimizing of pedestal error by adjusting the width of NMOS and PMOS of TG switch possible. The performance of the proposed circuit was evaluated using HSPICE 0.18-m CMOS process. For 50 MHz sinusoidal 1 V peak-to-peak differential input signal with a 1 GHz sampling clock, the proposed circuit achieves 2.75 mV maximum pedestal error, 0.542 mW power consumption, 90.87 dB SNR, 73.50 SINAD which is equal to 11.92 bits ENOB, -73.58 dB THD, and 73.95 dB SFDR.</p>


Sign in / Sign up

Export Citation Format

Share Document