scholarly journals A low power serial output flash ADC in 0,18 µm CMOS process

2015 ◽  
Vol 22 (6) ◽  
Sensors ◽  
2020 ◽  
Vol 20 (18) ◽  
pp. 5309
Author(s):  
Shengbiao An ◽  
Shuang Xia ◽  
Yue Ma ◽  
Arfan Ghani ◽  
Chan Hwang See ◽  
...  

Analogue-to-digital converters (ADC) using oversampling technology and the Σ-∆ modulation mechanism are widely applied in digital audio systems. This paper presents an audio modulator with high accuracy and low power consumption by using a discrete second-order feedforward structure. A 5-bit successive approximation register (SAR) quantizer is integrated into the chip, which reduces the number of comparators and the power consumption of the quantizer compared with flash ADC-type quantizers. An analogue passive adder is used to sum the input signals and it is embedded in a SAR ADC composed of a capacitor array and a dynamic comparator which has no static power consumption. To validate the design concept, the designed modulator is developed in a 180 nm CMOS process. The peak signal to noise distortion ratio (SNDR) is calculated as 106 dB and the total power consumption of the chip is recorded as 3.654 mW at the chip supply voltage of 1.8 V. The input sine wave of 0 to 25 kHz is sampled at a sampling frequency of 3.2 Ms/s. Moreover, the results achieve a 16-bit effective number of bits (ENOB) when the amplitude of the input signal is varied between 0.15 and 1.65 V. By comparing with other modulators which were realized by a 180 nm CMOS process, the proposed architecture outperforms with lower power consumption.


2011 ◽  
Vol 328-330 ◽  
pp. 1820-1823
Author(s):  
Li Cheng ◽  
Jiao Xu ◽  
Yi Xin Zhang ◽  
Ning Yang

This paper describes a low-power 1.2 V 8-bit 1Gs/s two-channel pipeline ADC. The novelty of the designed ADC lies in: ameliorating the two-channel pipeline structure that consists of 1.5-bit multiplying DAC (MDAC). In order to reduce the power consumption and improve the sampling speed, the dual-channel pipeline Time Division Multiplexing operation amplifier and double or single channel flash ADC are used; in the front-end Sample-and-Hold circuits, switch-linearization control circuits(SLC) driven by a single clock signal is applied to solve the problem of time-skew and time mismatch between two channels. The pipeline ADC is designed with 90 nm CMOS process. From the simulation results of the designed ADC, we can draw that the SFDR is 42.3 dB; the SNR is 32.7 dB under the usual temperature. The ADC achieves 21 mW power-dissipation, 8 resolution and 1.01 GS/s sampling speed. So the design meets high speed, high precision and low power dissipation at the same time.


2014 ◽  
Vol 17 (1) ◽  
pp. 52-61
Author(s):  
Thanh Tri Vo ◽  
Trong Tu Bui ◽  
Duc Hung Le ◽  
Cong Kha Pham

In this paper we present a design of Flash-ADC that can achieve high performance and low power consumption. By using the Double Sampling Rate technique and a new comparator topology with low kick-back noise, this design can achieve high sampling rate while still consuming low power. The design is implemented in a 0.18 m CMOS process. The simulation results show that this design can work at 400 MSps and power consumption is only 16.24 mW. The DNL and INL are 0.15 LSB and 0.6 LSB, respectively.


2014 ◽  
Vol 598 ◽  
pp. 365-370
Author(s):  
Shuo Zhang ◽  
Zong Min Wang ◽  
Liang Zhou

This paper presents an offset-cancellation and low power cascaded comparator with new technique for flash Analog-to-Digital Converters. The improved structure cancels both input and output offset voltage by the feedback from outputs to common inputs. The total current consumption is reduced sharply for a clock circle with 1:2 dutyratio. The improved comparator is implemented in 0.35μm CMOS process. The Spectre simulation results show that the offset voltage of the improved structure is 3.14996mV with σ = 2.0347mV,and total current consumption is 17.59μA, while the offset voltage and total current consumption of the primary one is -5.649mV with σ = 14.254mV and 57.18μA respectively.


2009 ◽  
Vol E92-C (2) ◽  
pp. 258-268 ◽  
Author(s):  
Ying-Zu LIN ◽  
Soon-Jyh CHANG ◽  
Yen-Ting LIU
Keyword(s):  

2017 ◽  
Vol MCSP2017 (01) ◽  
pp. 7-10 ◽  
Author(s):  
Subhashree Rath ◽  
Siba Kumar Panda

Static random access memory (SRAM) is an important component of embedded cache memory of handheld digital devices. SRAM has become major data storage device due to its large storage density and less time to access. Exponential growth of low power digital devices has raised the demand of low voltage low power SRAM. This paper presents design and implementation of 6T SRAM cell in 180 nm, 90 nm and 45 nm standard CMOS process technology. The simulation has been done in Cadence Virtuoso environment. The performance analysis of SRAM cell has been evaluated in terms of delay, power and static noise margin (SNM).


Author(s):  
Kirill D. Liubavin ◽  
Igor V. Ermakov ◽  
Alexander Y. Losevskoy ◽  
Andrey V. Nuykin ◽  
Alexander S. Strakhov
Keyword(s):  
Rfid Tag ◽  

Electronics ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 889
Author(s):  
Xiaoying Deng ◽  
Peiqi Tan

An ultra-low-power K-band LC-VCO (voltage-controlled oscillator) with a wide tuning range is proposed in this paper. Based on the current-reuse topology, a dynamic back-gate-biasing technique is utilized to reduce power consumption and increase tuning range. With this technique, small dimension cross-coupled pairs are allowed, reducing parasitic capacitors and power consumption. Implemented in SMIC 55 nm 1P7M CMOS process, the proposed VCO achieves a frequency tuning range of 19.1% from 22.2 GHz to 26.9 GHz, consuming only 1.9 mW–2.1 mW from 1.2 V supply and occupying a core area of 0.043 mm2. The phase noise ranges from −107.1 dBC/HZ to −101.9 dBc/Hz at 1 MHz offset over the whole tuning range, while the total harmonic distortion (THD) and output power achieve −40.6 dB and −2.9 dBm, respectively.


Electronics ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 805
Author(s):  
Shi Zuo ◽  
Jianzhong Zhao ◽  
Yumei Zhou

This article presents a low power digital controlled oscillator (DCO) with an ultra low power duty cycle correction (DCC) scheme. The DCO with the complementary cross-coupled topology uses the controllable tail resistor to improve the tail current efficiency. A robust duty cycle correction (DCC) scheme is introduced to replace self-biased inverters to save power further. The proposed DCO is implemented in a Semiconductor Manufacturing International Corporation (SMIC) 40 nm CMOS process. The measured phase noise at room temperature is −115 dBc/Hz at 1 MHz offset with a dissipation of 210 μμW at an oscillating frequency of 2.12 GHz, and the resulin figure-of-merit is s −189 dBc/Hz.


Sign in / Sign up

Export Citation Format

Share Document