A real time digital test bed for a smart grid using RTDS

Author(s):  
P. Tatcho ◽  
Y. Zhou ◽  
H. Li ◽  
L. Liu
Keyword(s):  
Test Bed ◽  
Author(s):  
A. Monot ◽  
M. Wahler ◽  
J. Valtari ◽  
M. Rita-Kasari ◽  
J. Nikko
Keyword(s):  

Sensors ◽  
2020 ◽  
Vol 20 (13) ◽  
pp. 3635 ◽  
Author(s):  
Guoming Zhang ◽  
Xiaoyu Ji ◽  
Yanjie Li ◽  
Wenyuan Xu

As a critical component in the smart grid, the Distribution Terminal Unit (DTU) dynamically adjusts the running status of the entire smart grid based on the collected electrical parameters to ensure the safe and stable operation of the smart grid. However, as a real-time embedded device, DTU has not only resource constraints but also specific requirements on real-time performance, thus, the traditional anomaly detection method cannot be deployed. To detect the tamper of the program running on DTU, we proposed a power-based non-intrusive condition monitoring method that collects and analyzes the power consumption of DTU using power sensors and machine learning (ML) techniques, the feasibility of this approach is that the power consumption is closely related to the executing code in CPUs, that is when the execution code is tampered with, the power consumption changes accordingly. To validate this idea, we set up a testbed based on DTU and simulated four types of imperceptible attacks that change the code running in ARM and DSP processors, respectively. We generate representative features and select lightweight ML algorithms to detect these attacks. We finally implemented the detection system on the windows and ubuntu platform and validated its effectiveness. The results show that the detection accuracy is up to 99.98% in a non-intrusive and lightweight way.


Energies ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 3322
Author(s):  
Sara Alonso ◽  
Jesús Lázaro ◽  
Jaime Jiménez ◽  
Unai Bidarte ◽  
Leire Muguira

Smart grid endpoints need to use two environments within a processing system (PS), one with a Linux-type operating system (OS) using the Arm Cortex-A53 cores for management tasks, and the other with a standalone execution or a real-time OS using the Arm Cortex-R5 cores. The Xen hypervisor and the OpenAMP framework allow this, but they may introduce a delay in the system, and some messages in the smart grid need a latency lower than 3 ms. In this paper, the Linux thread latencies are characterized by the Cyclictest tool. It is shown that when Xen hypervisor is used, this scenario is not suitable for the smart grid as it does not meet the 3 ms timing constraint. Then, standalone execution as the real-time part is evaluated, measuring the delay to handle an interrupt created in programmable logic (PL). The standalone application was run in A53 and R5 cores, with Xen hypervisor and OpenAMP framework. These scenarios all met the 3 ms constraint. The main contribution of the present work is the detailed characterization of each real-time execution, in order to facilitate selecting the most suitable one for each application.


Electronics ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 644
Author(s):  
Michal Frivaldsky ◽  
Jan Morgos ◽  
Michal Prazenica ◽  
Kristian Takacs

In this paper, we describe a procedure for designing an accurate simulation model using a price-wised linear approach referred to as the power semiconductor converters of a DC microgrid concept. Initially, the selection of topologies of individual power stage blocs are identified. Due to the requirements for verifying the accuracy of the simulation model, physical samples of power converters are realized with a power ratio of 1:10. The focus was on optimization of operational parameters such as real-time behavior (variable waveforms within a time domain), efficiency, and the voltage/current ripples. The approach was compared to real-time operation and efficiency performance was evaluated showing the accuracy and suitability of the presented approach. The results show the potential for developing complex smart grid simulation models, with a high level of accuracy, and thus the possibility to investigate various operational scenarios and the impact of power converter characteristics on the performance of a smart gird. Two possible operational scenarios of the proposed smart grid concept are evaluated and demonstrate that an accurate hardware-in-the-loop (HIL) system can be designed.


Electronics ◽  
2021 ◽  
Vol 10 (16) ◽  
pp. 1881
Author(s):  
Jesús Lázaro ◽  
Armando Astarloa ◽  
Mikel Rodríguez ◽  
Unai Bidarte ◽  
Jaime Jiménez

Since the 1990s, the digitalization process has transformed the communication infrastructure within the electrical grid: proprietary infrastructures and protocols have been replaced by the IEC 61850 approach, which realizes interoperability among vendors. Furthermore, the latest networking solutions merge operational technologies (OTs) and informational technology (IT) traffics in the same media, such as time-sensitive networking (TSN)—standard, interoperable, deterministic, and Ethernet-based. It merges OT and IT worlds by defining three basic traffic types: scheduled, best-effort, and reserved traffic. However, TSN demands security against potential new cyberattacks, primarily, to protect real-time critical messages. Consequently, security in the smart grid has turned into a hot topic under regulation, standardization, and business. This survey collects vulnerabilities of the communication in the smart grid and reveals security mechanisms introduced by international electrotechnical commission (IEC) 62351-6 and how to apply them to time-sensitive networking.


2021 ◽  
pp. 107754632110191
Author(s):  
Farzam Tajdari ◽  
Naeim Ebrahimi Toulkani

Aiming at operating optimally minimizing error of tracking and designing control effort, this study presents a novel generalizable methodology of an optimal torque control for a 6-degree-of-freedom Stewart platform with rotary actuators. In the proposed approach, a linear quadratic integral regulator with the least sensitivity to controller parameter choices is designed, associated with an online artificial neural network gain tuning. The nonlinear system is implemented in ADAMS, and the controller is formulated in MATLAB to minimize the real-time tracking error robustly. To validate the controller performance, MATLAB and ADAMS are linked together and the performance of the controller on the simulated system is validated as real time. Practically, the Stewart robot is fabricated and the proposed controller is implemented. The method is assessed by simulation experiments, exhibiting the viability of the developed methodology and highlighting an improvement of 45% averagely, from the optimum and zero-error convergence points of view. Consequently, the experiment results allow demonstrating the robustness of the controller method, in the presence of the motor torque saturation, the uncertainties, and unknown disturbances such as intrinsic properties of the real test bed.


Author(s):  
Wolf Schulze ◽  
Maurizio Zajadatz ◽  
Michael Suriyah ◽  
Thomas Leibfried

AbstractA test bed for the evaluation of novel control methods of inverters for renewable power generation is presented. The behavior of grid-following and grid-forming control in a test scenario is studied and compared.Using a real-time capable control platform with a cycle time of 50 µs, control methods developed with Matlab/Simulink can be implemented. For simplicity, a three-phase 4‑quadrant voltage amplifier is used instead of an inverter. Thus, the use of modulation and switched power semiconductors can be avoided. In order to show a realistic behavior of a grid-side filter, passive components can be automatically connected as L‑, LC- or LCL-filter. The test bed has a nominal active power of 43.6 kW and a nominal voltage of 400 V.As state-of-the-art grid-following control method, a current control in the d/q-system is implemented in the test bed. A virtual synchronous machine, the Synchronverter, is used as grid-forming control method. In combination with a frequency-variable grid emulation, the behavior of both control methods is studied in the event of a load connection in an island grid environment.


Sign in / Sign up

Export Citation Format

Share Document