A new approach to near-theoretical sampling rate for modulated wideband converter

Author(s):  
S. Abhijith Varma ◽  
K. M. M. Prabhu
2018 ◽  
Vol 7 (4) ◽  
pp. 605-655 ◽  
Author(s):  
Shirin Jalali ◽  
Arian Maleki

Abstract Consider the problem of estimating parameters $X^n \in \mathbb{R}^n $, from $m$ response variables $Y^m = AX^n+Z^m$, under the assumption that the distribution of $X^n$ is known. Lack of computationally feasible algorithms that employ generic prior distributions and provide a good estimate of $X^n$ has limited the set of distributions researchers use to model the data. To address this challenge, in this article, a new estimation scheme named quantized maximum a posteriori (Q-MAP) is proposed. The new method has the following properties: (i) In the noiseless setting, it has similarities to maximum a posteriori (MAP) estimation. (ii) In the noiseless setting, when $X_1,\ldots,X_n$ are independent and identically distributed, asymptotically, as $n$ grows to infinity, its required sampling rate ($m/n$) for an almost zero-distortion recovery approaches the fundamental limits. (iii) It scales favorably with the dimensions of the problem and therefore is applicable to high-dimensional setups. (iv) The solution of the Q-MAP optimization can be found via a proposed iterative algorithm that is provably robust to error (noise) in response variables.


2016 ◽  
Author(s):  
Michael Matschiner ◽  
Zuzana Musilová ◽  
Julia M I Barth ◽  
Zuzana Starostová ◽  
Walter Salzburger ◽  
...  

Divergence-time estimation based on molecular phylogenies and the fossil record has provided insights into fundamental questions of evolutionary biology. In Bayesian node dating, phylogenies are commonly time calibrated through the specification of calibration densities on nodes representing clades with known fossil occurrences. Unfortunately, the optimal shape of these calibration densities is usually unknown and they are therefore often chosen arbitrarily, which directly impacts the reliability of the resulting age estimates. As possible solutions to this problem, two non-exclusive alternative approaches have recently been developed, the "fossilized birth-death" model and "total-evidence dating". While these approaches have been shown to perform well under certain conditions, they require including all (or a random subset) of the fossils of each clade in the analysis, rather than just relying on the oldest fossils of clades. In addition, both approaches assume that fossil records of different clades in the phylogeny are all the product of the same underlying fossil sampling rate, even though this rate has been shown to differ strongly between higher-level taxa. We here develop a flexible new approach to Bayesian node dating that combines advantages of traditional node dating and the fossilized birth-death model. In our new approach, calibration densities are defined on the basis of first fossil occurrences and sampling rate estimates that can be specified separately for all clades. We verify our approach with a large number of simulated datasets, and compare its performance to that of the fossilized birth death model. We find that our approach produces reliable age estimates that are robust to model violation, on par with the fossilized birth-death model. By applying our approach to a large dataset including sequence data from over 1000 species of teleost fishes as well as 147 carefully selected fossil constraints, we recover a timeline of teleost diversification that is incompatible with previously assumed vicariant divergences of freshwater fishes. Our results instead provide strong evidence for trans-oceanic dispersal of cichlids and other groups of teleost fishes.


2019 ◽  
pp. 6-12
Author(s):  
M. N. Polunin ◽  
A. V. Bykova

The implementation of high‑throughput systems with the traditional approach to the discretization of the analog signal according to the Kotelnikov theorem is faced with the problems of high power consumption and the need to store and transfer large amounts of data. An alternative approach to sampling and processing information is based on advances in the compressed sampling theory. The paper provides a brief overview of the main provisions of this theory and considers examples of its use in practice for the implementation of information reading systems – analog‑to‑information converters. The purpose of these devices is to reduce the pressure on conventional analog‑to‑digital converters, to reduce the sampling rate and the amount of output data. The main architectures of analog‑information converters are considered: non‑uniform sampling, random filter, random demodulator, modulated wideband converter, compressive multiplexer, random modulator pre‑integrator, spread spectrum random modulator pre‑integrator.


2020 ◽  
Vol 959 (5) ◽  
pp. 26-34
Author(s):  
V.G. Andronov ◽  
Yu.N. Volobuev ◽  
А.А. Chuev

The authors analyze the existing ways of blurring elimination. It determines the technique and problem solving procedure of blurring correction in electro-optical scanning systems on board a spacecraft. The proposed technique is implemented at the initial stages of the survey and is based on the optimization of CCD matrix sampling rate according to the maximum of parameters dispersion of brightness image fields. In contrast to the known approaches, brightness differences of adjacent lines of survey route are values to be measured. The results of testing the technique on conditional frames of lines with different degrees of blurring obtained by distorting the signals of a real space image are presented. The authors’ new approach based on the established functional relationship between the level of blurring, survey parameters and errors of their determination was applied for the blurring simulation. The obtained results prove the possibility of reducing the initial blurring of images being formed on board a spacecraft to the magnitude of tenths of a pixel.


1999 ◽  
Vol 173 ◽  
pp. 185-188
Author(s):  
Gy. Szabó ◽  
K. Sárneczky ◽  
L.L. Kiss

AbstractA widely used tool in studying quasi-monoperiodic processes is the O–C diagram. This paper deals with the application of this diagram in minor planet studies. The main difference between our approach and the classical O–C diagram is that we transform the epoch (=time) dependence into the geocentric longitude domain. We outline a rotation modelling using this modified O–C and illustrate the abilities with detailed error analysis. The primary assumption, that the monotonity and the shape of this diagram is (almost) independent of the geometry of the asteroids is discussed and tested. The monotonity enables an unambiguous distinction between the prograde and retrograde rotation, thus the four-fold (or in some cases the two-fold) ambiguities can be avoided. This turned out to be the main advantage of the O–C examination. As an extension to the theoretical work, we present some preliminary results on 1727 Mette based on new CCD observations.


Author(s):  
V. Mizuhira ◽  
Y. Futaesaku

Previously we reported that tannic acid is a very effective fixative for proteins including polypeptides. Especially, in the cross section of microtubules, thirteen submits in A-tubule and eleven in B-tubule could be observed very clearly. An elastic fiber could be demonstrated very clearly, as an electron opaque, homogeneous fiber. However, tannic acid did not penetrate into the deep portion of the tissue-block. So we tried Catechin. This shows almost the same chemical natures as that of proteins, as tannic acid. Moreover, we thought that catechin should have two active-reaction sites, one is phenol,and the other is catechole. Catechole site should react with osmium, to make Os- black. Phenol-site should react with peroxidase existing perhydroxide.


Author(s):  
K. Chien ◽  
R. Van de Velde ◽  
I.P. Shintaku ◽  
A.F. Sassoon

Immunoelectron microscopy of neoplastic lymphoma cells is valuable for precise localization of surface antigens and identification of cell types. We have developed a new approach in which the immunohistochemical staining can be evaluated prior to embedding for EM and desired area subsequently selected for ultrathin sectioning.A freshly prepared lymphoma cell suspension is spun onto polylysine hydrobromide- coated glass slides by cytocentrifugation and immediately fixed without air drying in polylysine paraformaldehyde (PLP) fixative. After rinsing in PBS, slides are stained by a 3-step immunoperoxidase method. Cell monolayer is then fixed in buffered 3% glutaraldehyde prior to DAB reaction. After the DAB reaction step, wet monolayers can be examined under LM for presence of brown reaction product and selected monolayers then processed by routine methods for EM and embedded with the Chien Re-embedding Mold. After the polymerization, the epoxy blocks are easily separated from the glass slides by heatingon a 100°C hot plate for 20 seconds.


Author(s):  
W. A. Chiou ◽  
N. Kohyama ◽  
B. Little ◽  
P. Wagner ◽  
M. Meshii

The corrosion of copper and copper alloys in a marine environment is of great concern because of their widespread use in heat exchangers and steam condensers in which natural seawater is the coolant. It has become increasingly evident that microorganisms play an important role in the corrosion of a number of metals and alloys under a variety of environments. For the past 15 years the use of SEM has proven to be useful in studying biofilms and spatial relationships between bacteria and localized corrosion of metals. Little information, however, has been obtained using TEM capitalizing on its higher spacial resolution and the transmission observation of interfaces. The research presented herein is the first step of this new approach in studying the corrosion with biological influence in pure copper.Commercially produced copper (Cu, 99%) foils of approximately 120 μm thick exposed to a copper-tolerant marine bacterium, Oceanospirillum, and an abiotic culture medium were subsampled (1 cm × 1 cm) for this study along with unexposed control samples.


Author(s):  
Arthur V. Jones

With the introduction of field-emission sources and “immersion-type” objective lenses, the resolution obtainable with modern scanning electron microscopes is approaching that obtainable in STEM and TEM-but only with specific types of specimens. Bulk specimens still suffer from the restrictions imposed by internal scattering and the need to be conducting. Advances in coating techniques have largely overcome these problems but for a sizeable body of specimens, the restrictions imposed by coating are unacceptable.For such specimens, low voltage operation, with its low beam penetration and freedom from charging artifacts, is the method of choice.Unfortunately the technical dificulties in producing an electron beam sufficiently small and of sufficient intensity are considerably greater at low beam energies — so much so that a radical reevaluation of convential design concepts is needed.The probe diameter is usually given by


Author(s):  
E. Voelkl ◽  
L. F. Allard

The conventional discrete Fourier transform can be extended to a discrete Extended Fourier transform (EFT). The EFT allows to work with discrete data in close analogy to the optical bench, where continuous data are processed. The EFT includes a capability to increase or decrease the resolution in Fourier space (thus the argument that CCD cameras with a higher number of pixels to increase the resolution in Fourier space is no longer valid). Fourier transforms may also be shifted with arbitrary increments, which is important in electron holography. Still, the analogy between the optical bench and discrete optics on a computer is limited by the Nyquist limit. In this abstract we discuss the capability with the EFT to change the initial sampling rate si of a recorded or simulated image to any other(final) sampling rate sf.


Sign in / Sign up

Export Citation Format

Share Document