Performance of asymmetric gate oxide on gate-drain overlap in Si and Si1−xGex double gate tunnel FETs

Author(s):  
S. Poorvasha ◽  
B. Lakshmi
Keyword(s):  
2018 ◽  
Vol 17 (1) ◽  
Author(s):  
Md Ibnul Bin Kader Arnub ◽  
M Tanseer Ali

The double gate MOSFET, where two gates are fabricated along the length of the channel one after another. Design of logic gates is one of the most eminent application of Double Gate MOSFET. Gallium nitride (GaN) based metal-oxide semiconductor field-effect transistors (MOSFETs) are shown to be promising for digital logic applications. This paper describes the design and analysis of different types of logic gates using GaN based DG-MOSFET. The gate length (LG) is kept constant at 10.6 nm. The gate voltage varies from 0 to 1 V for the device switching from turn OFF to turn ON-state. For the device with HfO2 as gate oxide, the ON-state current (ION) and OFF-state current (IOFF) are found 8.11×10-3 and 6.38605×10-9A/μm respectively. The leakage current is low for the device with HfO2 as compared to that for the device with ZrO2. The subthreshold swing (SS) is 68.7408 mV/dec for the device with HfO2.


2016 ◽  
Vol 12 (9) ◽  
pp. 892-897 ◽  
Author(s):  
Bong-Hyun You ◽  
Soo-Yeon Lee ◽  
Seok-Ha Hong ◽  
Jae-Hoon Lee ◽  
Hyun-Chang Kim ◽  
...  

2018 ◽  
Vol 32 (15) ◽  
pp. 1850157 ◽  
Author(s):  
Yue-Gie Liaw ◽  
Chii-Wen Chen ◽  
Wen-Shiang Liao ◽  
Mu-Chun Wang ◽  
Xuecheng Zou

Nano-node tri-gate FinFET devices have been developed after integrating a 14 Å nitrided gate oxide upon the silicon-on-insulator (SOI) wafers established on an advanced CMOS logic platform. These vertical double gate (FinFET) devices with ultra-thin silicon fin (Si-fin) widths ranging from 27 nm to 17 nm and gate length down to 30 nm have been successfully developed with a 193 nm scanner lithography tool. Combining the cobalt fully silicidation and the CESL strain technology beneficial for PMOS FinFETs was incorporated into this work. Detailed analyses of [Formula: see text]–[Formula: see text] characteristics, threshold voltage [Formula: see text], and drain-induced barrier lowering (DIBL) illustrate that the thinnest 17 nm Si-fin width FinFET exhibits the best gate controllability due to its better suppression of short channel effect (SCE). However, higher source/drain resistance [Formula: see text], channel mobility degradation due to dry etch steps, or “current crowding effect” will slightly limit its transconductance [Formula: see text] and drive current.


2021 ◽  
Author(s):  
SHIKHA U S ◽  
Rekha K James ◽  
Jobymol Jacob ◽  
Anju Pradeep

Abstract The drain current improvement in a Negative Capacitance Double Gate Tunnel Field Effect Transistor (NC-DG TFET) with the help of Heterojunction (HJ) at the source-channel region is proposed and modeled in this paper. The gate oxide of the proposed TFET is a stacked configuration of high-k over low-k to improve the gate control without any lattice mismatches. Tangent Line Approximation (TLA) method is used here to model the drain current accurately. The model is validated by incorporating two dimensional simulation of DG-HJ TFET with one dimensional Landau-Khalatnikov (LK) equation. The model matches excellently with the device simulation results. The impact of stacked gate oxide topology is also studied in this paper by comparing the characteristics with unstacked gate oxide. Voltage amplification factor (Av), which is an important parameter in NC devices is also analyzed.


2020 ◽  
Vol 59 (SG) ◽  
pp. SGGA06
Author(s):  
Koichi Fukuda ◽  
Naoya Nogami ◽  
Shogo Kunisada ◽  
Yasuyuki Miyamoto

Sign in / Sign up

Export Citation Format

Share Document