Survivin promotes rheumatoid arthritis fibroblast‐like synoviocyte cell proliferation, and the expression of angiogenesis‐related proteins by activating the NOTCH pathway

Author(s):  
Sha Ma ◽  
Jing Wang ◽  
Jun Lin ◽  
Song Jin ◽  
Fang He ◽  
...  
2020 ◽  
Vol 40 (8) ◽  
Author(s):  
Shanshan Yang ◽  
Wei Yin ◽  
Yan Ding ◽  
Fan Liu

Abstract Backgrounds: Rheumatoid arthritis (RA) is a frequent autoimmune disease. Emerging evidence indicated that ZNFX1 antisense RNA1 (ZFAS1) participates in the physiological and pathological processes in RA. However, knowledge of ZFAS1 in RA is limited, the potential work pathway of ZFAS1 needs to be further investigated. Methods: Levels of ZFAS1, microRNA (miR)-2682-5p, and ADAM metallopeptidase with thrombospondin type 1 motif 9 (ADAMTS9) were estimated using quantitative real-time polymerase chain reaction (qRT-PCR) assay. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay was conducted to explore the ability of cell proliferation in fibroblast-like synoviocytes (FLS-RA). Cell apoptosis was measured via flow cytometry. Also, levels of ADAMTS9, apoptosis-related proteins, cleaved-caspase-3 (active large subunit), and autophagy-related proteins were identified adopting Western blot. Enzyme-linked immunosorbent assay (ELISA) was performed to determine the productions of inflammatory cytokines. Beside, the interrelation between miR-2682-5p and ZFAS1 or ADAMTS9 was verified utilizing dual-luciferase reporter assay. Results: High levels of ZFAS1 and ADAMTS9, and a low level of miR-2682-5p were observed in RA synovial tissues and FLS-RA. Knockdown of ZFAS1 led to the curbs of cell proliferation, inflammation, autophagy, and boost apoptosis in FLS-RA, while these effects were abolished via regaining miR-2682-5p inhibition. Additionally, the influence of miR-2682-5p on cell phenotypes and inflammatory response were eliminated by ADAMTS9 up-regulation in FLS-RA. Mechanically, ZFAS1 exerted its role through miR-2682-5p/ADAMTS9 axis in RA. Conclusion: ZFAS1/miR-2682-5p/ADAMTS9 axis could modulate the cell behaviors, inflammatory response in FLS-RA, might provide a potential therapeutic target for RA treatment.


2020 ◽  
Vol 21 (8) ◽  
pp. 734-740 ◽  
Author(s):  
Shou-di He ◽  
Ning Tan ◽  
Chen-xia Sun ◽  
Kang-han Liao ◽  
Hui-jun Zhu ◽  
...  

Background: Melittin, the major medicinal component of honeybee venom, exerts antiinflammatory, analgesic, and anti-arthritic effects in patients with Rheumatoid Arthritis (RA). RA is an inflammatory autoimmune joint disease that leads to irreversible joint destruction and functional loss. Fibroblast-Like Synoviocytes (FLS) are dominant, special mesenchymal cells characterized by the structure of the synovial intima, playing a crucial role in both the initiation and progression of RA. Objective: In this study, we evaluated the effects of melittin on the viability and apoptosis of FLS isolated from patients with RA. Methods: Cell viability was determined using CCK-8 assays; apoptosis was evaluated by flow cytometry, and the expression levels of apoptosis-related proteins (caspase-3, caspase-9, BAX, and Bcl-2) were also determined. To explore whether melittin alters inflammatory processes in RA-FLS, IL-1β levels were determined using an enzyme-linked immunosorbent assay (ELISA). Furthermore, we performed GFP-LC3 punctate fluorescence dot assays and western blotting (for LC3, ATG5, p62, and Beclin 1) to assess autophagy in RA-FLS. Results: Our results show that melittin can significantly impair viability, promote apoptosis and autophagy, and inhibit IL-1β secretion in RA-FLS. Conclusion: Melittin may be useful in preventing damage to the joints during accidental local stimulation.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Haoqi Zhao ◽  
Lan Wang ◽  
Shufang Wang ◽  
Xihua Chen ◽  
Min Liang ◽  
...  

Abstract Background Metastasis and invasion are crucial in determining the mortality of cervical carcinoma (CC) patients. The epithelial–mesenchymal transition (EMT) is now a universal explanation for the mechanisms of tumor metastasis. Α-chimeric protein (α-chimaerin, CHN1) plays an important role in the regulation of signal transduction and development. However, the molecular regulatory relationships between CHN1 and CC progression in relation to EMT have not yet been identified. Methods The expression of CHN1 in CC tissues, adjacent tissues, and lymph node metastases from CC patients was detected by immunohistochemistry. Upregulation and knockdown of CHN1 were achieved by transfection of CC cells. The effect of CHN1 on cell proliferation was determined by CCK-8 and plate clone formation assays. Changes in migration and invasion capabilities were evaluated using scratch migration and transwell invasion assays. The effect of CHN1 overexpression and interference on xenograft tumor growth was determined by tumor weight and pathological analyses. The expression of EMT-related mRNAs was measured by qRT-PCR in transfected CC cells. EMT-related proteins and Akt/GSK-3β/Snail signaling pathway-related proteins were also evaluated by western blotting. Results CHN1 was overexpressed in CC tissues and was associated with lymph node metastasis and low survival in CC patients. Overexpression of CHN1 promoted cell proliferation, migration, and invasion in CC cells. In contrast, silencing of CHN1 inhibited these phenomena. Overexpression of CHN1 promoted tumor formation in an in vivo xenograft tumor mouse model, with increased tumor volumes and weights. In addition, CHN1 induced the expression of EMT-related transcription factors, accompanied by the decreased expression of epithelial markers and increased expression of mesenchymal markers. The Akt/GSK-3β/Snail signaling pathway was activated by overexpression of CHN1 in vitro, and activation of this pathway was inhibited by the signaling pathway inhibitor LY294002. Conclusion These results suggest that CHN1 promotes the development and progression of cervical carcinoma via the Akt/GSK-3β/Snail pathway by inducing EMT.


2015 ◽  
Vol 60 (8) ◽  
pp. 449-454 ◽  
Author(s):  
Shigeki Mitsunaga ◽  
Kazuyoshi Hosomichi ◽  
Yuko Okudaira ◽  
Hirofumi Nakaoka ◽  
Yasuo Suzuki ◽  
...  

2003 ◽  
Vol 88 (4) ◽  
pp. 1858-1865 ◽  
Author(s):  
Ilkka Ketola ◽  
Jorma Toppari ◽  
Tommi Vaskivuo ◽  
Riitta Herva ◽  
Juha S. Tapanainen ◽  
...  

FEBS Letters ◽  
2003 ◽  
Vol 540 (1-3) ◽  
pp. 86-90 ◽  
Author(s):  
Li Shen ◽  
Jian Hu ◽  
Hong Lu ◽  
Ming Wu ◽  
Wenxin Qin ◽  
...  

2021 ◽  
Vol 49 (3) ◽  
pp. 030006051988725
Author(s):  
Liu Wang ◽  
Pan Qu ◽  
Wanling Yin ◽  
Jiao Sun

Objective We aimed to investigate the effect of long non-coding RNA nuclear-enriched abundant transcript 1 (lnc-NEAT1) on regulating hepatocyte proliferation, apoptosis, and inflammation during hepatic ischemia/reperfusion (I/R) injury. Methods Human liver cells (HL-7702) were cultured under glucose-free and oxygen-free conditions to construct the I/R injury model. Expression of lnc-NEAT1 was detected in this model and in normal cells. Plasmids of control overexpression [NC(+)], lnc-NEAT1 overexpression [NEAT1(+)], control short hairpin (sh)RNA [NC(−)], and lnc-NEAT1 shRNA [NEAT1(−)] were transfected into HL-7702 cells and subsequently subjected to I/R treatment. Cell proliferation, apoptosis, apoptosis-related proteins, and inflammatory cytokines were assessed. Results Lnc-NEAT1 expression was elevated in the I/R group compared with the normal group. Cell proliferation was decreased in the NEAT1(+) group compared with the NC(+) group but increased in NEAT1(−) compared with NC(−). The apoptosis rate increased in the NEAT1(+) group compared with the NC(+) group but decreased in NEAT1(−) compared with NC(−). Western blot assay (detection of apoptosis-related proteins) showed similar results. Expression of interleukin-1β, interleukin-6, and tumor necrosis factor-α increased in the NEAT1(+) group compared with NC(+) but decreased in NEAT1(−) compared with NC(−). Conclusion Lnc-NEAT1 is overexpressed, induces cell apoptosis and inflammation, and inhibits proliferation during hepatic I/R injury.


2021 ◽  
Vol 11 (9) ◽  
pp. 1760-1768
Author(s):  
Fang Zhang ◽  
Jili Zou ◽  
Dandan Huang

Our study elucidates the effect of folate polyamide amine dendrimer nanoparticles targeting delivery of miRNA-200c inhibitor and CDDP on lung cancer cells proliferation. We established polyamide amine dendrimer nanoparticles binding with CDDP and miRNA-200c inhibitor (Den-PEI-CDDP-siRNA-FA), TEM was employed to detect the morphology of nanoparticles. Agarose gel assay was selected for stabilization test. Cell proliferation were detected by trypanosoma blue exclusion method. The expression of miRNA-200c targeted APKPA12 and apoptosis-related proteins were detected by Western blot and PCR. Finally, apoptosis was analyzed by flow cytometry. Den-PEI-CDDP-siRNA-FA nanoparticles showed excellent stability and drug encapsulation ability. Nanoparticles targeting for FRA to co-deliver siRNA and CDDP could significantly promote cell apoptosis, increase apoptosis-related protein expression, and inhibit cell proliferation. Besides, nanoparticles exerted less venomous effect than untargeted nanoparticles in MRC9 lung fibroblast. Den nanoparticle targeting FRA might be used as the carrier for joint applications with siRNA and CDDP for treating lung cancer.


2021 ◽  
Vol 11 (9) ◽  
pp. 1744-1751
Author(s):  
Deqian Meng ◽  
Wenyou Pan ◽  
Ju Li

Accumulating evidence have indicated that MicroRNAs (miRNAs) are key regulators in human rheumatoid arthritis (RA). The aim of this study was to explore the functional roles of miR-16-5p in proliferation, inflammation, and apoptosis of fibroblast-like synoviocytes (FLS). The expression of miR-16-5p and SOCS6 in FLA was detected by quantitative real-time polymerase chain reaction (qRT-PCR). Cell proliferation and apoptosis were measured by CCK-8 assay and flow cytometry, respectively. Luciferase reporter assay was used to verify the direct target of miR-16-5p. Western blot analysis was performed to analysis the levels of SOCS6, Bcl-2, Bax and cleaved caspase 3. miR-16-5p expression was significantly upregulated while SOCS6 level was decreased in RA-FLS compared with normal FLS. In addition, luciferase reporter assay confirmed that SOCS6 was the target of miR-16-5p. Silencing of miR-16-5p inhibited cell proliferation, releases of TNF-α, IL-1β, IL-6 and IL-8, and induced the apoptosis. The effects of miR-16-5p silencing on RA-FLS were reversed by downregulation of SOCS6. In summary, knockdown of miR-16-5p could suppress cell proliferation and accelerate the apoptosis of RA-FLS through targeting SOCS6, which may provide a potential therapeutic target for patients with RA.


Sign in / Sign up

Export Citation Format

Share Document