Gloriously Intertwined: A Bavinckian Account of the Single Organism of Dogmatics and Ethics

Author(s):  
Ximian Xu
Keyword(s):  
2007 ◽  
Vol 53 (3) ◽  
pp. 380-390 ◽  
Author(s):  
Pious Thomas ◽  
Sima Kumari ◽  
Ganiga K. Swarna ◽  
T.K.S. Gowda

Fourteen distinct bacterial clones were isolated from surface-sterilized shoot tips (~1 cm) of papaya (Carica papaya L. ‘Surya’) planted on Murashige and Skoog (MS)-based papaya culture medium (23/50 nos.) during the 2–4 week period following in vitro culturing. These isolates were ascribed to six Gram-negative genera, namely Pantoea ( P. ananatis ), Enterobacter ( E. cloacae ), Brevundimonas ( B. aurantiaca ), Sphingomonas , Methylobacterium ( M. rhodesianum ), and Agrobacterium ( A. tumefaciens ) or two Gram-positive genera, Microbacterium ( M. esteraromaticum ) and Bacillus ( B. benzoevorans ) based on 16S rDNA sequence analysis. Pantoea ananatis was the most frequently isolated organism (70% of the cultures) followed by B. benzoevorans (13%), while others were isolated from single stocks. Bacteria-harboring in vitro cultures often showed a single organism. Pantoea, Enterobacter, and Agrobacterium spp. grew actively on MS-based normal papaya medium, while Microbacterium, Brevundimonas, Bacillus, Sphingomonas, and Methylobacterium spp. failed to grow in the absence of host tissue. Supplying MS medium with tissue extract enhanced the growth of all the organisms in a dose-dependent manner, indicating reliance of the endophyte on its host. Inoculation of papaya seeds with the endophytes (20 h at OD550 = 0.5) led to delayed germination or slow seedling growth initially. However, the inhibition was overcome by 3 months and the seedlings inoculated with Pantoea, Microbacterium, or Sphingomonas spp. displayed significantly better root and shoot growths.


2018 ◽  
Vol 2018 ◽  
pp. 1-8 ◽  
Author(s):  
Songbai Yang ◽  
Xiaolong Zhou ◽  
Yue Pei ◽  
Han Wang ◽  
Ke He ◽  
...  

Estrus is an important factor for the fecundity of sows, and it is involved in ovulation and hormone secretion in ovaries. To better understand the molecular mechanisms of porcine estrus, the expression patterns of ovarian mRNA at proestrus and estrus stages were analyzed using RNA sequencing technology. A total of 2,167 differentially expressed genes (DEGs) were identified (P≤0.05, log2  Ratio≥1), of which 784 were upregulated and 1,383 were downregulated in the estrus compared with the proestrus group. Gene Ontology (GO) enrichment indicated that these DEGs were mainly involved in the cellular process, single-organism process, cell and cell part, and binding and metabolic process. In addition, a pathway analysis showed that these DEGs were significantly enriched in 33 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways, including cell adhesion molecules, ECM-receptor interaction, and cytokine-cytokine receptor interaction. Quantitative real-time reverse transcription polymerase chain reaction (qRT-PCR) confirmed the differential expression of 10 selected DEGs. Many of the novel candidate genes identified in this study will be valuable for understanding the molecular mechanisms of the sow estrous cycle.


1961 ◽  
Vol 59 (2) ◽  
pp. 205-216 ◽  
Author(s):  
Jean M. Dolby ◽  
A. F. B. Standfast

The growth of virulent strains of Bordetella pertussis in the brains of mice was studied by carrying out viable counts on mice killed at various times during the infection. The results suggested that this system conformed to the general model which postulates that the organisms causing death multiply in vivo at a rate which is constant for all doses and that death is certain to occur when the number of organisms reaches a certain constant figure.Perhaps the most important factor in this route of infection is the lodgement of the parasite in the host, for if this is accomplished a single organism grows until the lethal level is reached. There is no sublethal infection.In actively and passively protected mice, the growth of the organism is approximately the same as in unprotected controls for the first 4–5 days. At this time there is a striking change in protected animals and the viable count falls rapidly and progressively and the animals survive. At the same time the blood-brain barrier becomes permeable and circulating antibodies diffuse into the brain. In vitro, specific antisera plus complement are highly bactericidal.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Xinjin Chen ◽  
Bolin Fan ◽  
Chenlong Fan ◽  
Zhongliang Wang ◽  
Eakapol Wangkahart ◽  
...  

Abstract Backgroud Streptococcus agalactiae is a common colonizer of the rectovaginal tract and lead to infectious diseases of neonatal and non-pregnant adults, which also causes infectious disease in fish and a zoonotic risk as well. Lysine crotonylation (Kcr) is a kind of histone post-translational modifications discovered in 2011. In yeast and mammals, Kcr function as potential enhancers and promote gene expression. However, lysine crotonylation in S. agalactiae has not been studied yet. Methods In this study, the crotonylation profiling of fish pathogen, S. agalactiae was investigated by combining affinity enrichment with LC MS/MS. The Kcr modification of several selected proteins were further validated by Western blotting. Results In the present study, we conducted the proteome-wide profiling of Kcr in S. agalactiae and identified 241 Kcr sites from 675 screened proteins for the first time. Bioinformatics analysis showed that 164 sequences were matched to a total of six definitively conserved motifs, and many of them were significantly enriched in metabolic processes, cellular process, and single-organism processes. Moreover, four crotonylation modified proteins were predicted as virulence factors or to being part of the quorum sensing system PTMs on bacteria. The data are available via ProteomeXchange with identifier PXD026445. Conclusions These data provide a promising starting point for further functional research of crotonylation in bacterial virulence in S. agalactiae.


Author(s):  
Mokshanand Fhooblall ◽  
Fikile Nkwanyana ◽  
Koleka P. Mlisana

Background: There are presently many non-culture-based methods commercially available to identify organisms and antimicrobial susceptibility from blood culture bottles. Each platform has its benefits and limitations. However, there is a need for an improved system with minimal hands-on requirements and short run times.Objectives: In this study, the performance characteristics of the FilmArray® BCID Panel kit were evaluated to assess the efficiency of the kit against an existing system used for identification and antimicrobial susceptibility of organisms from blood cultures.Methods: Positive blood cultures that had initially been received from hospitalised patients of a large quaternary referral hospital in Durban, South Africa were processed as per routine protocol at its Medical Microbiology Laboratory. Positive blood cultures were processed on the FilmArray BCID Panel kit in parallel with the routine sample processing. Inferences were then drawn from results obtained.Results: Organism detection by the FilmArray BCID panel was accurate at 92.6% when organisms that were on the repertoire of the kit were considered, compared to the combination methods (reference method used in the study laboratory). Detection of the antimicrobial resistance markers provided by the panel and reference method demonstrated 100% consistency. Blood cultures with a single organism were accurately identified at 93.8% by FilmArray, while blood cultures with more than one organism were identified at 85.7%.Conclusion: The FilmArray BCID Panel kit is valuable for detection of organisms and markers of antibiotic resistance for an extensive range of organisms.


2020 ◽  
Vol 13 (12) ◽  
pp. 1844-1853
Author(s):  
Ji Jin ◽  
Gao-Qin Liu ◽  
Pei-Rong Lu

AIM: To analyze the retinal proteomes with and without conbercept treatments in mice with oxygen-induced retinopathy (OIR) and identify proteins involved in the molecular mechanisms mediated by conbercept. METHODS: OIR was induced in fifty-six C57BL/6J mouse pups and randomly divided into four groups. Group 1: Normal17 (n=7), mice without OIR and treated with normal air. Group 2: OIR12/EXP1 (n=14), mice received 75% oxygen from postnatal day (P) 7 to 12. Group 3: OIR17/Control (n=14), mice received 75% oxygen from P7 to P12 and then normal air to P17. Group 4: Lang17/EXP2 (n=21), mice received 75% oxygen from P7 to P12 with intravitreal injection of 1 µL conbercept at the concentration of 10 mg/mL at P12, and then normal air from P12 to P17. Liquid Chromatography-Mass Spectrometry (LC-MS)/MS data were reviewed to find proteins that were up-regulated after the conbercept treatment. Gene ontology (GO) analysis was performed of conbercept-mediated changes in proteins involved in single-organism processes, biological regulation, cellular processes, immune responses, metabolic processes, locomotion and multiple-organism processes. RESULTS: Conbercept induced a reversal of hypoxia-inducible factor 1 signaling pathway as revealed by the Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis and also induced down-regulation of proteins involved in blood coagulation and fibrin clot formation as demonstrated by the Database for Annotation, Visualization and Integrated Discovery (DAVID) and the stimulation of interferon genes studies. These appear to be risk factors of retinal fibrosis. Additional conbercept-specific fibrosis risk factors were also identified and may serve as therapeutic targets for fibrosis. CONCLUSION: Our studies reveal that many novel proteins are differentially regulated by conbercept. The new insights may warrant a valuable resource for conbercept treatment.


Author(s):  
S. V. Volkov

The complexity and importance of the study of the U.S. – Japan relations in world politics requires continuous improvement of scientific methods. However, works which would analyze the U.S. – Japan relations as a single organism are practically nonexistent. The article analyzes the U.S. – Japan relations as a whole integrative system with a specific structure. The institutionalization of the American- Japanese system, its interaction with world politics are considered especially. The author determines structure of the system, detects leading interactions between its elements, examines the integrity of the American-Japanese system, its levels and hierarchy, dynamics of functioning. The study attempts to prove the author’s methodology which considers bilateral U.S. – Japan institutions as the basis of the American – Japanese system. As part of this methodology the conjugation between the system of bilateral American- Japanese institutions and world politics is analyzed. The dependence of the system on world politics and the dependence of world politics on changes in the U.S. – Japan relations are also revealed. As a result of the study an integral picture of the U.S. – Japan relations is demonstrated. The logic and patterns of their development are determined. It is shown that globalization, changes in balance of power, emergence of a vast number of non-state actors on a world stage changed and continue to change U.S. – Japan relations. What is more, the transformation of the U.S. – Japan relations is the transformation of world politics itself.


2020 ◽  
Author(s):  
Rui Wang ◽  
Luting Wen ◽  
Huawei Ma ◽  
Huizan Yang ◽  
Min Lv ◽  
...  

Abstract Background: Gonadotropin releasing hormone (GnRH) plays an important role in the regulation of vertebrate reproduction. Studies have shown that immunization against GnRHa can induce sexually sterile tilapia. To explore the mechanism behind this, in this study, RNA-seq and data-independent acquisition (DIA) techniques were used to study the transcriptome and proteome of the gonad of tilapia immunized with GnRHa. Results : 644 differentially expressed genes (80 upregulated and 564 downregulated) and 1150 differentially expressed proteins (351 upregulated and 799 downregulated) were identified. There were 209 genes with consistent differential expression patterns in the transcriptomic and proteomic analyses, of which 9 were upregulated and 200 downregulated, indicating that the gonad gene expression was inhibited by GnRHa immunization. The downregulated genes were particularly involved in the functions of single-organism process, binding, cellular process, metabolic process and catalytic activity, and associated with the pathways including ECM–receptor interaction, focal adhesion, cardiac muscle contraction and oxidative phosphorylation. The expression of six differentially expressed genes involved in the GnRH signaling pathway was all downregulated. In addition, several important functional genes related to gonadal development after GnRHa immunization were screened. Conclusions: This study confirmed the expression of corresponding genes was affected by GnRHa on the gonad development in tilapia at the molecular level, and laid a foundation for elucidating the mechanism of GnRHa immunization.


PEDIATRICS ◽  
1960 ◽  
Vol 26 (3) ◽  
pp. 498-499
Author(s):  
Ernest Jawetz

I read with interest the paper by Haggerty and Ziai (Pediatrics, 25:742, 1960). I fully agree with the authors' recommendation that acute bacterial meningitis of infants be treated with multiple drugs directed at the most likely etiologic agents until a specific single organism has been identified. However, the authors' repeated references to some of my past publications force me to call attention to some possibly misleading statements in their paper. After the initial demonstration of "antibiotic antagonism" in vitro and in experimental animals, we pointed out repeatedly (Arch. Int. Med., 90:301, 1952; Pharmacol.


2021 ◽  
Vol 1 (6) ◽  
pp. 91-97
Author(s):  
Yury V. Lebedev ◽  

The article reveals the deep connections of the “people’s thought” and Tolstoy’s philosophy of history in “War and Peace” with the theological and literary-critical works of A.S. Khomyakova. The author of the work analyzes the dispute between Tolstoy and the cult of an outstanding personality, with the Hegelian understanding of his role in the historical process. Tolstoy is alien to the Hegelian rise of “great personalities” over the masses, the Hegelian liberation of the “genius” from moral control and evaluation. Tolstoy believes that it is not an exceptional personality, but the life of the people that turns out to be the most sensitive organism, catching the will of Providence, intuitively sensing the hidden meaning of the historical movement. Anticipating Tolstoy, Khomyakov sharply criticizes the cult of personality in the church hierarchy, the Catholic dogma of papal infallibility, of the unconditional authority of an individual in matters of conscience and faith. Khomyakov reveals deep religious roots that feed the centuries-old Western enmity towards Russia. The article proves that Tolstoy is close to Khomyakov’s idea that Divine Providence overshadows with its grace only the believing people, united into a single organism by Christian love, that the epic basis of “War and Peace” is anticipated in Khomyakov’s literary-critical works “Glinka’s Opera ‘Life for Tsar’”, “On the Possibility of the Russian Art School”, “Ivanov’s Painting. Letter to the editor of ‘Russian Beseda’”. The article proves that “War and Peace” overcomes the conflict between the individual and society, the hero and the people, and reveals the epic horizons lost in the Western European novel.


Sign in / Sign up

Export Citation Format

Share Document