Stable isotope carbon study: long-term partitioning during progressive drought stress in Brassica napus var. oleifera

1989 ◽  
Vol 12 (6) ◽  
pp. 615-620 ◽  
Author(s):  
E. DELEENS ◽  
L. MARCOTTE ◽  
N. SCHWEBEL-DUGUE ◽  
N. VARTANIAN
2003 ◽  
Vol 141 (2) ◽  
pp. 231-240 ◽  
Author(s):  
P. J. W. LUTMAN ◽  
S. E. FREEMAN ◽  
C. PEKRUN

The present paper reports on three sets of experiments exploring the persistence of seeds of oilseed rape (Brassica napus). The first, where known numbers of seeds were buried in September 1991 in two field experiments, demonstrated substantial initial losses of seeds, such that only 0·2 and 3·8% of seeds were still present after 4 months. In these experiments, which were not disturbed by mechanical cultivation, there was little evidence of further decline over the following 13 months. In the second of the two experiments, seeds were then left undisturbed for a further 136 months. A mean of 1·8% of seeds were still present after this period, providing further confirmation of the lack of decline in seed numbers in these undisturbed conditions. In the second pair of experiments, known numbers of seeds of three rape cultivars were broadcast onto plots and then either ploughed into the soil immediately after the start of the experiments, or were exposed to weekly shallow tine cultivation followed by ploughing after 4 weeks. The former created a larger seedbank than the latter. The experiments were then ploughed, annually (Expt 1) or at less frequent intervals (Expt 2); appreciable numbers of seeds survived for 65 months in both. Calculations based on exponential decline curves indicated that 95% seed loss would take 15–39 months, depending on the site, cultivar and initial post-harvest stubble treatment. The third part of the paper is based on more detailed studies of persistence of seeds of six cultivars in Petri dishes and buried in 25 cm pots. This work confirmed that cultivars differed in their persistence, as Apex was confirmed as highly persistent, whereas Rebel was short-lived. There were inconsistencies in the response of cultivar Synergy between the Petri-dish and pot experiment, which need further study. This experiment also reinforced the conclusion of the initial field experiments that little seed loss occurs in the absence of cultivations. Appreciable numbers of rape seeds will persist up to 4 years, in normal cropping conditions and in the absence of cultivation one experiment has confirmed persistence for over 11 years.


2017 ◽  
Vol 83 (22) ◽  
Author(s):  
Konstantia Gkarmiri ◽  
Shahid Mahmood ◽  
Alf Ekblad ◽  
Sadhna Alström ◽  
Nils Högberg ◽  
...  

ABSTRACT RNA stable isotope probing and high-throughput sequencing were used to characterize the active microbiomes of bacteria and fungi colonizing the roots and rhizosphere soil of oilseed rape to identify taxa assimilating plant-derived carbon following 13CO2 labeling. Root- and rhizosphere soil-associated communities of both bacteria and fungi differed from each other, and there were highly significant differences between their DNA- and RNA-based community profiles. Verrucomicrobia, Proteobacteria, Planctomycetes, Acidobacteria, Gemmatimonadetes, Actinobacteria, and Chloroflexi were the most active bacterial phyla in the rhizosphere soil. Bacteroidetes were more active in roots. The most abundant bacterial genera were well represented in both the 13C- and 12C-RNA fractions, while the fungal taxa were more differentiated. Streptomyces, Rhizobium, and Flavobacterium were dominant in roots, whereas Rhodoplanes and Sphingomonas (Kaistobacter) were dominant in rhizosphere soil. “Candidatus Nitrososphaera” was enriched in 13C in rhizosphere soil. Olpidium and Dendryphion were abundant in the 12C-RNA fraction of roots; Clonostachys was abundant in both roots and rhizosphere soil and heavily 13C enriched. Cryptococcus was dominant in rhizosphere soil and less abundant, but was 13C enriched in roots. The patterns of colonization and C acquisition revealed in this study assist in identifying microbial taxa that may be superior competitors for plant-derived carbon in the rhizosphere of Brassica napus. IMPORTANCE This microbiome study characterizes the active bacteria and fungi colonizing the roots and rhizosphere soil of Brassica napus using high-throughput sequencing and RNA-stable isotope probing. It identifies taxa assimilating plant-derived carbon following 13CO2 labeling and compares these with other less active groups not incorporating a plant assimilate. Brassica napus is an economically and globally important oilseed crop, cultivated for edible oil, biofuel production, and phytoextraction of heavy metals; however, it is susceptible to several diseases. The identification of the fungal and bacterial species successfully competing for plant-derived carbon, enabling them to colonize the roots and rhizosphere soil of this plant, should enable the identification of microorganisms that can be evaluated in more detailed functional studies and ultimately be used to improve plant health and productivity in sustainable agriculture.


2010 ◽  
Vol 196 (2) ◽  
pp. 81-89 ◽  
Author(s):  
T. Müller ◽  
D. Lüttschwager ◽  
P. Lentzsch

2021 ◽  
Author(s):  
◽  
Sean David Cooper

<p>Ecosystem-based management (EBM) has become an increasingly popular concept for government agencies to incorporate into management planning strategies. The basic idea behind EBM is that an ecosystem remains intact, resilient and productive in the long-term, to provide for ecological, social, cultural and economic benefits. The problem that decision makers face is that there is often little information regarding the structure and functioning of ecosystems upon which to base meaningful decisions. A further complication is that governance of the environment is highly sectoral both across government and within agencies. This often leads to fractured management between the terrestrial, freshwater and marine environments, potentially risking biodiversity loss and the stability of ecosystems.  Small oceanic islands may potentially be model ecosystems for undertaking ecological studies, due to their constrained spatial extent and often unmodified condition. The New Zealand Subantarctic Islands, which are remote and largely unmodified, provide a natural laboratory to study the structure and functioning of ecosystems. I undertook stable isotope and water nutrient sampling to describe the trophic structure, trophic interactions and the drivers of the Antipodes and Bounty Islands, two of the islands in New Zealand’s Subantarctic region. These islands have high conservation value and are an important area for breeding seabirds and marine mammals, but there have been no studies at these islands to understand how they function and what the connections are between the terrestrial and marine environments.  Using the stable isotope signatures of nitrogen (δ¹⁵N) and carbon (δ¹³C) from a wide range of common marine and terrestrial species at both islands, I described the trophic structure of each island. I found that the islands had a similar number of trophic levels and that omnivory was present beyond secondary consumers and below top level predators. Antipodes Island had a more complex food web than the Bounty Islands, but both islands showed strong linkages between the terrestrial and marine environments at both a local scale and with habitats beyond the sovereignty area of New Zealand.  A basic two-source mixing model was used to determine the carbon sources that were important at each island. It was found that the Antipodes Island marine communities were influenced by phytoplankton, but that kelp was also an important contributor of carbon to consumers’ diets. In contrast, at the Bounty Islands, phytoplankton was the sole carbon source in marine communities. Terrestrial species at both islands had a marine-derived carbon component to their diets, with Antipodes Island terrestrial species incorporating a combination of terrestrial-derived and marine-derived carbon. The Bounty Islands’ terrestrial species were completely reliant on marine-derived carbon that was linked to phytoplankton. To further test the diets of species, Isosource was used to reconstruct the diets of the most common marine invertebrates and terrestrial species, again demonstrating strong marine-terrestrial links.  To determine if there was any correlation between the distance from shore, water nutrient concentrations and phytoplankton stable isotope signatures, samples were collected in open ocean sites across the Campbell Plateau and within 12 nautical miles of each island. It was found that the nitrate levels of Antipodes Island water samples decreased with distance towards the island and that nitrate and dissolved reactive phosphorous levels increased with distance towards the Bounty Islands.  This research has clearly demonstrated that there is a strong link between the marine and terrestrial realms at both islands and at spatial scales beyond the islands. The current management of the islands requires this new information to be taken into consideration in future management planning, so that trophic connections are maintained across realms. Further work is required across government and within agencies to bring legislation, policy and science into an integrated framework across sectors. This will allow environmental managers to reduce threats at the ecosystem level to minimise biodiversity loss and the risk of degradation of ecosystems, to protect New Zealand’s long-term biodiversity, social, cultural and economic prosperity.</p>


2021 ◽  
Vol 12 ◽  
Author(s):  
Kang Chen ◽  
Yang Huang ◽  
Chunni Liu ◽  
Yu Liang ◽  
Maoteng Li

Long non-coding RNAs (lncRNAs) play an important role in the response of plants to drought stress. The previous studies have reported that overexpression of LEA3 and VOC could enhance drought tolerance and improve the oil content in Brassica napus and Arabidopsis thaliana, and most of the efforts have been invested in the gene function analysis, there is little understanding of how genes that involved in these important pathways are regulated. In the present study, the transcriptomic results of LEA3 and VOC over-expressed (OE) lines were compared with the RNAi lines, mutant lines and control lines under long-term and short-term drought treatment, a series of differentially expressed lncRNAs were identified, and their regulation patterns in mRNA were also investigated in above mentioned materials. The regulation of the target genes of differentially expressed lncRNAs on plant biological functions was studied. It was revealed that the mutant lines had less drought-response related lncRNAs than that of the OE lines. Functional analysis demonstrated that multiple genes were involved in the carbon-fixing and chlorophyll metabolism, such as CDR1, CHLM, and CH1, were regulated by the upregulated lncRNA in OE lines. In LEA-OE, AT4G13180 that promotes the fatty acid synthesis was regulated by five lncRNAs that were upregulated under both long-term and short-term drought treatments. The key genes, including of SHM1, GOX2, and GS2, in the methylglyoxal synthesis pathway were all regulated by a number of down-regulated lncRNAs in OE lines, thereby reducing the content of such harmful compounds produced under stress in plants. This study identified a series of lncRNAs related to the pathways that affect photosynthesis, chlorophyll synthesis, fatty acid synthesis, degradation, and other important effects on drought resistance and oil content. The present study provided a series of lncRNAs for further improvement of crop varieties, especially drought resistant and oil content traits.


Abstract.—Spiny dogfish <em>Squalus acanthias </em>are an abundant and commercially important species of fish off both the Atlantic and Pacific coasts of North America. They are opportunistic feeders and have a varied diet that can include many fish species, especially small forage fish such as herring, capelin, and sand lance as well as crustaceans, worms, euphausiids, gelatinous zooplankton, and cephalopods. The purpose of our present study is to investigate the utility of the second dorsal spine in providing multiyear information on the feeding habits of dogfish using stable isotope (C and N) analysis. The outer dentine and enamel layers of a spine from three dogfish (caught off the coast of British Columbia) were analyzed to obtain their stable nitrogen and carbon isotope composition (δ<sup>15</sup>N and δ<sup>13</sup>C, respectively). Each sample had annuli from multiple years, allowing possible seasonal migrations to be averaged over samples. The δ<sup>15</sup>N ranged from a low of 11.6‰ to a high of 14.9‰ over the three spines and δ<sup>13</sup>C ranged from –11.5‰ to –18.4‰. The variable isotopic signatures along the spine indicate that the method may be used to assess ecological changes. Stable isotope measurements of dogfish spines could be a valuable means of determining long-term changes in habitat usage and feeding ecology.


Genes ◽  
2020 ◽  
Vol 11 (8) ◽  
pp. 919
Author(s):  
Luping Huang ◽  
Lei Zhang ◽  
Ruier Zeng ◽  
Xinyue Wang ◽  
Huajian Zhang ◽  
...  

Drought negatively affects the growth and yield of terrestrial crops. Seed priming, pre-exposing seed to a compound, could induce improved tolerance and adaptation to stress in germinated plants. To understand the effects and regulatory mechanism of seed priming with brassinosteroid (BR) on peanut plants, we treated seeds with five BR concentrations and examined dozens of physiological and biochemical features, and transcriptomic changes in leaves under well-watered and drought conditions. We found optimal 0.15 ppm BR priming could reduce inhibitions from drought and increase the yield of peanut, and priming effects are dependent on stage of plant development and duration of drought. BR priming induced fewer differentially expressed genes (DEGs) than no BR priming under well-watered condition. Drought with BR priming reduced the number of DEGs than drought only. These DEGs were enriched in varied gene ontologies and metabolism pathways. Downregulation of DEGs involved in both light perceiving and photosynthesis in leaves is consistent with low parameters of photosynthesis. Optimal BR priming partially rescued the levels of growth promoting auxin and gibberellin which were largely reduced by drought, and increased levels of defense associated abscisic acid and salicylic acid after long-term drought. BR priming induced many DEGs which function as kinase or transcription factor for signal cascade under drought. We proposed BR priming-induced regulatory responses will be memorized and recalled for fast adaptation in later drought stress. These results provide physiological and regulatory bases of effects of seed priming with BR, which can help to guide the framing improvement under drought stress.


2019 ◽  
Vol 21 (1) ◽  
pp. 159 ◽  
Author(s):  
Yongkun Chen ◽  
Canhui Li ◽  
Jing Yi ◽  
Yu Yang ◽  
Chunxia Lei ◽  
...  

Potato is an important food crop and its production is susceptible to drought. Drought stress in crop growth is usually multiple- or long-term. In this study, the drought tolerant potato landrace Jancko Sisu Yari was treated with drought stress, rehydration and re-dehydration, and RNA-seq was applied to analyze the characteristics of gene regulation during these treatments. The results showed that drought-responsive genes mainly involved photosynthesis, signal transduction, lipid metabolism, sugar metabolism, wax synthesis, cell wall regulation, osmotic adjustment. Potato also can be recovered well in the re-emergence of water through gene regulation. The recovery of rehydration mainly related to patatin, lipid metabolism, sugar metabolism, flavonoids metabolism and detoxification besides the reverse expression of the most of drought-responsive genes. The previous drought stress can produce a positive responsive ability to the subsequent drought by drought hardening. Drought hardening was not only reflected in the drought-responsive genes related to the modified structure and cell components, but also in the hardening of gene expression or the “memory” of drought-responsive genes. Abundant genes involved photosynthesis, signal transduction, sugar metabolism, protease and protease inhibitors, flavonoids metabolism, transporters and transcription factors were subject to drought hardening or memorized drought in potato.


1996 ◽  
Vol 74 (6) ◽  
pp. 1057-1068 ◽  
Author(s):  
Stuart A. Alexander ◽  
Keith A. Hobson ◽  
Cheri L. Gratto-Trevor ◽  
Antony W. Diamond

We used gut-content and stable-isotope techniques to determine diets of shorebirds staging at a prairie wetland complex. Stable-isotope ratios for carbon (13C/12C) and nitrogen (15N/14N) varied greatly within and among prey types and shorebirds, depending on location within the complex. Both dietary techniques suggested that Long-billed Dowitchers (Limnodromus scolopaceus) and Stilt Sandpipers (Calidris himantopus) ate mostly invertebrates, whereas Hudsonian (Limosa haemastica) and Marbled godwits (Limosa fedoa) ate mainly Potamogeton pectinatus tubers. In comparison, the stable-isotope technique indicated that godwits, especially juvenile Marbled Godwits, ate more invertebrates than is indicated by the gut-content analysis. The discrepancies between methods reflect the potential for bias in the application of these techniques. Researchers using stable isotopes to assess migratory shorebird diets should be aware of possible complications arising from isotopic variability within prey types, even over small geographic ranges. High isotopic variability at inland agro-wetland complexes might preclude reliable isotopic assessment of shorebird diets, especially long term. Rhizivory in godwits may be more common than is generally recognized, especially at inland stopovers during autumn migration in both North America and Eurasia, and should be factored into conservation initiatives for these species.


2008 ◽  
Vol 65 (10) ◽  
pp. 2191-2200 ◽  
Author(s):  
Christopher T. Solomon ◽  
Stephen R. Carpenter ◽  
James A. Rusak ◽  
M. Jake Vander Zanden

Carbon and nitrogen stable isotope ratios are increasingly used to study long-term food web change. Temporal variation at the base of the food web may impact the accuracy of trophic niche estimates, but data describing interannual baseline variation are limited. We quantified baseline variation over a 23-year period in a north-temperate lake and used a simulation model to examine how this variation might affect consumer trophic niche estimates. Interannual variation in C and N stable isotope ratios was significant for both benthic and pelagic primary consumer baselines. Long-term linear trends and shorter-term autoregressive patterns were apparent in the data. There were no correlations among benthic and pelagic C and N baselines. Simulations demonstrated that error in estimated fish trophic niches, but not bias, increased substantially when sampling of baselines was incomplete. Accurate trophic niche estimates depended more on accurate estimation of baseline time series than on accurate estimation of growth and turnover rates. These results highlight the importance of previous and continued efforts to constrain bias and error in long-term stable isotope food web studies.


Sign in / Sign up

Export Citation Format

Share Document