THE EFFECT OF MONOCHROMATIC LIGHT ON TRANS-HEXADECENOIC ACID and CHLOROPHYLL ACCUMULATION IN ETIOLATED LEAVES OF VIGNA SINENSIS L.*

1982 ◽  
Vol 35 (2) ◽  
pp. 283-284 ◽  
Author(s):  
C. Guët ◽  
A. Tremolieres ◽  
A. Lecharny
Author(s):  
J. H. Butler ◽  
C. J. Humphreys

Electromagnetic radiation is emitted when fast (relativistic) electrons pass through crystal targets which are oriented in a preferential (channelling) direction with respect to the incident beam. In the classical sense, the electrons perform sinusoidal oscillations as they propagate through the crystal (as illustrated in Fig. 1 for the case of planar channelling). When viewed in the electron rest frame, this motion, a result of successive Bragg reflections, gives rise to familiar dipole emission. In the laboratory frame, the radiation is seen to be of a higher energy (because of the Doppler shift) and is also compressed into a narrower cone of emission (due to the relativistic “searchlight” effect). The energy and yield of this monochromatic light is a continuously increasing function of the incident beam energy and, for beam energies of 1 MeV and higher, it occurs in the x-ray and γ-ray regions of the spectrum. Consequently, much interest has been expressed in regard to the use of this phenomenon as the basis for fabricating a coherent, tunable radiation source.


Molecules ◽  
2021 ◽  
Vol 26 (8) ◽  
pp. 2286
Author(s):  
Gwang-Woo Kim ◽  
Jae-Man Sim ◽  
Yutaka Itabashi ◽  
Min-Jeong Jung ◽  
Joon-Young Jun

Fatty acids in marine algae have attracted the attention of natural chemists because of their biological activity. The fatty acid compositions of the Solieriaceae families (Rhodophyceae, Gaigartinales) provide interesting information that unusual cyclic fatty acids have been occasionally found. A survey was conducted to profile the characteristic fatty acid composition of the red alga Solieria pacifica (Yamada) Yoshida using gas chromatography-mass spectrometry (GC-MS), infrared spectroscopy (IR), and proton nuclear magnetic resonance spectroscopy (1H-NMR). In S. pacifica, two cyclopentyl fatty acids, 11-cyclopentylundecanoic acid (7.0%), and 13-cyclopentyltridecanoic acid (4.9%), and a cyclopropane fatty acid, cis-11,12-methylene-hexadecanoic acid (7.9%) contributed significantly to the overall fatty acid profile. In particular, this cyclopropane fatty acid has been primarily found in bacteria, rumen microorganisms or foods of animal origin, and has not previously been found in any other algae. In addition, this alga contains a significant amount of the monoenoic acid cis-11-hexadecenoic acid (9.0%). Therefore, cis-11,12-methylene-hexadecanoic acid in S. pacifica was likely produced by methylene addition to cis-11-hexadecenoic acid.


Author(s):  
Tulika Tyagi ◽  
Mala Agarwal

Objective: To investigate the bioactive components of an invasive aquatic weed, Pistia stratiotes L. and Eichhornia crassipes (Mart.) Solms vegetative parts by using Gas Chromatography-Mass Spectrometer (GC-MS).Methods: The chemical compositions of the ethanol extract of whole plant Pistia stratiotes L. and Eichhornia crassipes (Mart.) Solms was investigated using Agilent Technologies GC-MS (GC-7890A, MS 5975C).Results: The results of GC-MS analysis of the ethanolic extract revealed the existence of 28 phytochemical compounds in Pistia stratiotes L. n-Hexadecanoic acid,-11-Hexadecenoic acid, ethyl ester, Hexadecanoic acid, ethyl ester, Octadecanoic acid, ethyl ester, 2-Cyclopenten-1-one, 5-hydroxy-2,3-dimethyl, L-Glutamine, 2-Pentadecanone, 6,10,14-trimethyl, Linolelaidic acid, methyl ester, 9,12,15-Octadecatrienoic acid, methyl ester,(Z,Z,Z), Nonadecane, 12,15-Octadecadiynoic acid, methyl ester, Hexadecanoic acid, 2-hydroxy-1-(hydroxymethyl)ethyl ester, Diisooctyl phthalate, Docosanoic acid, ethyl ester, Stigmasterol, Bis(2-ethylhexyl) phthalate, 1-Monolinoleoylglycerol trimethylsilyl ether, Ethyl iso-allocholate are the major compound.The ethanolic extract of Eichhornia crassipes (Mart.) Solms contains 43 phytochemical compounds of high and low molecular weight n-Hexadecanoic acid, E-11-Hexadecenoic acid, ethyl ester, Palmitic acid, Phytol, 9,12,15-Octadecatrienal, 9,12-Octadecadienoic acid, ethyl ester, Linolenic acid, ethyl ester, Stearic acid, ethyl ester, Hexadecanoic acid, 2-hydroxy-1-(hydroxymethyl)ethyl ester, α-Glyceryl linolenate, 1-Monolinoleoylglycerol trimethylsilyl ether, Linoleic acid, 2,3-bis-(O-TMS)-propyl ester, Stigmasterol, Linolelaidic acid, methyl ester, 9,12,15-Octadecatrienoic acid, ethyl ester, (Z,Z,Z), Ethyl iso-allocholate, Cholesta-22,24-dien-5-ol, 4,4-dimethyl are the major compounds.These results indicates Pistia stratiotes L. and Eichhornia crassipes (Mart.) Solms possess potent antioxidant, anti-inflammatory, anticancer, antitumour, antiarthritic, cancer preventive, antibacterial effects so can be recommended as a plant of phytopharmaceutical importance.Conclusion: The ethanol extract of Pistia stratiotes L. and Eichhornia crassipes (Mart.) Solms proves as a potential source of bioactive compounds of pharmacological importance.


Author(s):  
Mervat H. Hussein ◽  
Eladl Eltanahy ◽  
Alaa Fathy Al Bakry ◽  
Nesrein Elsafty ◽  
Maha M. Elshamy

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Xuehua Wang ◽  
Xianghu Wang ◽  
Jianfeng Huang ◽  
Shaoxiang Li ◽  
Alan Meng ◽  
...  

AbstractConstruction of Z-scheme heterostructure is of great significance for realizing efficient photocatalytic water splitting. However, the conscious modulation of Z-scheme charge transfer is still a great challenge. Herein, interfacial Mo-S bond and internal electric field modulated Z-scheme heterostructure composed by sulfur vacancies-rich ZnIn2S4 and MoSe2 was rationally fabricated for efficient photocatalytic hydrogen evolution. Systematic investigations reveal that Mo-S bond and internal electric field induce the Z-scheme charge transfer mechanism as confirmed by the surface photovoltage spectra, DMPO spin-trapping electron paramagnetic resonance spectra and density functional theory calculations. Under the intense synergy among the Mo-S bond, internal electric field and S-vacancies, the optimized photocatalyst exhibits high hydrogen evolution rate of 63.21 mmol∙g−1·h−1 with an apparent quantum yield of 76.48% at 420 nm monochromatic light, which is about 18.8-fold of the pristine ZIS. This work affords a useful inspiration on consciously modulating Z-scheme charge transfer by atomic-level interface control and internal electric field to signally promote the photocatalytic performance.


2020 ◽  
Vol 35 (Supplement_3) ◽  
Author(s):  
Miriam Zacchia ◽  
Emanuela Marchese ◽  
Marianna Caterino ◽  
Margherita Ruoppolo ◽  
Giovambattista Capasso

Abstract Background and Aims Bardet Biedl Syndrome (BBS) is a rare genetic disorder characterized by a wide range of organ dysfunction, including kidney disease. The severity of renal dysfunction is highly variable in this setting, ranging from tubular defects to the end stage renal disease, with poor genotype-phenotype correlation. Proteomics and metabolomics are powerful tools able to contribute to the better understanding of molecular basis of disease conditions. Our previous studies demonstrated that the urinary proteomic pattern of BBS patients differed from that of healthy subjects, with a set of deregulated proteins including cell adhesion and extracellular matrix organization proteins (1). The present study aims to characterize urine metabolomic profile of BBS patients, in order to identify both 1) potential disease biomarkers and 2) aberrant metabolic pathways underlying renal disease Method To this end, in the pilot study urine samples have been collected from 14 adult BBS patients and have been compared with healthy volunteers, using an untargeted strategy. In the confirmation study, 24 BBS patients with wide range of kidney dysfunction have been enrolled, and additional control groups, besides healthy subjects, were included: 1) age-gender-matched chronic kidney disease patients by other causes and 2) obese individuals. Results Several metabolites were de-regulated in BBS patients compared with normal subjects (lactic acid, glycolic acid,3-Hydroxypropionic acid, pyruvic acid, 3-hydroxyisobutyric acid, 2-ethyl-3-hydroxy-propionic acid, succinic acid, fumaric acid, erythropentonic acid, 2-hydroxyglutaric acid, 4-hydroxyphenyllactic acid, 3,4-pyridinedicarboxylic acid, retinoic acid, 4-hydroxyphenylacetic acid, palmitic acid, 9-Hexadecenoic acid, oleic acid and 9-Octadecenoic acid). The clusterization performed by MetaboAnalyst tool, revealed a possible deregulation of different metabolic pathways, including glycolysis, TCA cycle, pyruvate metabolism, lipids biosynthesis and glutamate metabolism (p-value <0.01) (figure 1); some of these pathways were described as de-regulated in other ciliopathies (2). In the confirmation study (on-going studies) some metabolites, including lactic acid and intermediates of Krebs cycle, correlated with kidney dysfunction only in the BBS group. Conclusion These findings suggest that urine metabolomic fingerprint of BBS patients is different from that of healthy subjects and indicate a possible deregulation of several metabolic pathways; some urinary molecules correlated with kidney dysfunction only in BBS patients, suggesting the specificity of these results.


2019 ◽  
Vol 317 (4) ◽  
pp. C725-C736
Author(s):  
Gurbind Singh ◽  
Divya Sridharan ◽  
Mahmood Khan ◽  
Polani B. Seshagiri

We earlier established the mouse embryonic stem (ES) cell “GS-2” line expressing enhanced green fluorescent protein (EGFP) and have been routinely using it to understand the molecular regulation of differentiation into cardiomyocytes. During such studies, we made a serendipitous discovery that functional cardiomyocytes derived from ES cells stopped beating when exposed to blue light. We observed a gradual cessation of contractility within a few minutes, regardless of wavelength (nm) ranges tested: blue (~420–495), green (~510–575), and red (~600–700), with green light manifesting the strongest impact. Following shifting of cultures back into the incubator (darkness), cardiac clusters regained beatings within a few hours. The observed light-induced contractility-inhibition effect was intrinsic to cardiomyocytes and not due to interference from other cell types. Also, this was not influenced by any physicochemical parameters or intracellular EGFP expression. Interestingly, the light-induced cardiomyocyte contractility inhibition was accompanied by increased intracellular reactive oxygen species (ROS), which could be abolished in the presence of N-acetylcysteine (ROS quencher). Besides, the increased intracardiomyocyte ROS levels were incidental to the inhibition of calcium transients and suppression of mitochondrial activity, both being essential for sarcomere function. To the best of our knowledge, ours is the first report to demonstrate the monochromatic light-mediated inhibition of contractions of cardiomyocytes with no apparent loss of cell viability and contractility. Our findings have implications in cardiac cell biology context in terms of 1) mechanistic insights into light impact on cardiomyocyte contraction, 2) potential use in laser beam-guided (cardiac) microsurgery, photo-optics-dependent medical diagnostics, 3) transient cessation of hearts during coronary artery bypass grafting, and 4) functional preservation of hearts for transplantation.


Sign in / Sign up

Export Citation Format

Share Document