Comparison of homogenization with the GentleMacs Dissociator versus conventional methods for routine tissue processing

Author(s):  
Mailys Pradal ◽  
Pierre Saint‐sardos ◽  
Tiphanie Faïs ◽  
Richard Bonnet ◽  
Julien Delmas
Author(s):  
Kazuyuki Koike ◽  
Hideo Matsuyama

Spin-polarized scanning electron microscopy (spin SEM), where the secondary electron spin polarization is used as the image signal, is a novel technique for magnetic domain observation. Since its first development by Koike and Hayakawa in 1984, several laboratories have extensively studied this technique and have greatly improved its capability for data extraction and its range of applications. This paper reviews the progress over the last few years.Almost all the high expectations initially held for spin SEM have been realized. A spatial resolution of several hundreds angstroms has been attained, which is nearly one order of magnitude higher than that of conventional methods for thick samples. Quantitative analysis of magnetization direction has been performed more easily than with conventional methods. Domain observation of the surface of three-dimensional samples has been confirmed to be possible. One of the drawbacks, a long image acquisition time, has been eased by combining highspeed image-signal processing with high speed scanning, although at the cost of image quality. By using spin SEM, the magnetic structure of a 180 degrees surface Neel wall, magnetic thin films, multilayered films, magnetic discs, etc., have been investigated.


2012 ◽  
Vol 28 (1) ◽  
pp. 11-18 ◽  
Author(s):  
Marcus Roth ◽  
Philipp Hammelstein

Based on the conception of sensation seeking as a need rather than a temperamental trait ( Hammelstein, 2004 ), we present a new assessment method, the Need Inventory of Sensation Seeking (NISS), which is considered to assess a motivational disposition. Three studies are presented: The first examined the factorial structure and the reliability of the German versions of the NISS; the second study compared the German and the English versions of the NISS; and finally, the validity of the NISS was examined in a nonclinical study and compared to the validity of conventional methods of assessing sensation seeking (Sensation Seeking Scale – Form V; SSS-V). Compared to the SSS-V, the NISS shows better reliability and validity in addition to providing new research possibilities including application in experimental areas.


Author(s):  
Mahesh G. Kharatmol ◽  
Deepali Jagdale

Pyrazoline class of compounds serve as better moieties for an array of treatments, they have antibacterial, antifungal, antiinflammatory, antipyretic, diuretic, cardiovascular activities. Apart from these they also have anticancer activities. So, pertaining to its importance, many attempts are made to synthesize pyrazolines. Since conventional methods of organic synthesis are energy and time consuming. There are elaborate pathways for green and eco-friendly synthesis of pyrazoline derivatives including microwave irradiation, ultrasonic irradiation, grinding and use of ionic liquids which assures the synthesis of the same within much lesser time and by use of minimal energy


Author(s):  
Tomokazu Nakai

Abstract Currently many methods are available to obtain a junction profile of semiconductor devices, but the conventional methods have drawbacks, and they could be obstacles for junction profile analysis. This paper introduces an anodic wet etching-based two-dimensional junction profiling method, which is practical, efficient, and reliable for failure analysis and electrical characteristics evaluation.


Author(s):  
Carl M. Nail

Abstract Dice must often be removed from their packages and reassembled into more suitable packages for them to be tested in automated test equipment (ATE). Removing bare dice from their substrates using conventional methods poses risks for chemical, thermal, and/or mechanical damage. A new removal method is offered using metallography-based and parallel polishing-based techniques to remove the substrate while exposing the die to minimized risk for damage. This method has been tested and found to have a high success rate once the techniques are learned.


Author(s):  
P. Larré ◽  
H. Tupin ◽  
C. Charles ◽  
R.H. Newton ◽  
A. Reverdy

Abstract As technology nodes continue to shrink, resistive opens have become increasingly difficult to detect using conventional methods such as AVC and PVC. The failure isolation method, Electron Beam Absorbed Current (EBAC) Imaging has recently become the preferred method in failure analysis labs for fast and highly accurate detection of resistive opens and shorts on a number of structures. This paper presents a case study using a two nanoprobe EBAC technique on a 28nm node test structure. This technique pinpointed the fail and allowed direct TEM lamella.


Author(s):  
John S. Miller ◽  
Duane Karr

Motor vehicle crash countermeasures often are selected after an extensive data analysis of the crash history of a roadway segment. The value of this analysis depends on the accuracy or precision with which the crash itself is located. yet this crash location only is as accurate as the estimate of the police officer. Global Positioning System (GPS) technology may have the potential to increase data accuracy and decrease the time spent to record crash locations. Over 10 months, 32 motor vehicle crash locations were determined by using both conventional methods and hand-held GPS receivers, and the timeliness and precision of the methods were compared. Local crash data analysts were asked how the improved precision affected their consideration of potential crash countermeasures with regard to five crashes selected from the sample. On average, measuring a crash location by using GPS receivers added up to 10 extra minutes, depending on the definition of the crash location, the technology employed, and how that technology was applied. The average difference between conventional methods of measuring the crash location and either GPS or a wheel ranged from 5 m (16 ft) to 39 m (130 ft), depending on how one defined the crash location. Although there are instances in which improved precision will affect the evaluation of crash countermeasures, survey respondents and the literature suggest that problems with conventional crash location methods often arise from human error, not a lack of precision inherent in the technology employed.


Sign in / Sign up

Export Citation Format

Share Document