PREPARATION AND CHARACTERIZATION OF SUPERHYDROPHILIC NANOCOMPOSITE ULTRAFILTRATION MEMBRANES FOR TREATMENT OF HIGHLY CONCENTRATED OIL-IN-WATER EMULSION

2017 ◽  
Vol 79 (1-2) ◽  
Author(s):  
G. S. Lai ◽  
W. J. Lau ◽  
P. S. Goh ◽  
Y. H. Tan ◽  
A. F. Ismail ◽  
...  

In oily wastewater treatment using membrane technology, surface fouling is the major issue that could deteriorate membrane flux and shorten its lifespan. Therefore, nanocomposite membranes were developed in this study by incorporating titanium dioxide (TiO2) and hydrous manganese oxide (HMO) nanoparticles into polymeric membrane matrix. Three different types of membranes were fabricated. They were pristine PES and membrane incorporated with TiO2 or HMO. With respect to pure water flux, TiO2- and HMO-incorporated membranes showed value of 57 and 40 L/m2.h, respectively. These values were 33-90% higher than that of control PES membrane. In treating 500 ppm oily solution, TiO2 membrane exhibited the highest water flux. However, the membrane’s oil removal rate was slightly compromised. When tested with higher concentration of oily solution (5,000 or 10,000 ppm), TiO2- and HMO-incorporated membranes still showed promising water flux with 94.5-99.6% oil removal rate. This proved that ultrafiltration membrane incorporated with suitable nanomaterials could improve the water flux of pristine PES membrane and is of more practical for industrial applications.

Author(s):  
N. Chin ◽  
S. O. Lai ◽  
K. C. Chong ◽  
S. S. Lee ◽  
C. H. Koo ◽  
...  

The study was concerned with the treatment of tank dewatering produced water using hybrid microfiltration (MF) and ultrafiltration (UF) processes. The pre-treatment MF membrane was fabricated with polyethersulfone (PES), n-methyl-2-pyrrolidone (NMP) and polyvinylpyrrolidone (PVP). The UF membranes meanwhile contained additional component, i.e., titanium dioxide (TiO2) nanoparticles in the range of zero to 1.0 wt.%. The membrane performances were analysed with respect to permeate flux, oil removal and flux recovery ratio. An increase in TiO2 nanoparticles enhanced the pore formation, porosity and pure water permeability due to improved hydrophilicity. The permeate flux of UF membranes increased with the increase of TiO2 nanoparticles and pressure. The oil removal rate by MF process was only 52.35%, whereas the oil rejection efficiency was between 82.34% and 95.71% for UF process. It should be highlighted that the overall oil removal rate could achieve as high as 97.96%. Based on the results, the PES membrane incorporated with 1.0 wt.% TiO2 was proved to be the most promising membrane at a transmembrane pressure of 3 bar. Although 1.0 M NaOH solution could be used as cleaning agent to recover membrane water flux, it is not capable of achieving good results as only 52.18% recovery rate was obtained.


Materials ◽  
2020 ◽  
Vol 13 (24) ◽  
pp. 5762
Author(s):  
Yeau-Ren Jeng ◽  
Ping-Chi Tsai ◽  
Ching-Min Chang ◽  
Kuo-Feng Hsu

An experimental investigation was performed on the coefficients of friction (COFs) and wear properties of pure water and oil-in-water (O/W) working fluids containing carbon nanocapsules (CNCs) with concentrations ranging from 0 to 1.0 wt.%. For the O/W working fluid, the ratio of oil to water was set as 6%. It was shown that for the water working fluid, the COF decreased by around 20% as the CNC content increased from 0 to 1.0 wt.%. In contrast, the wear volume increased by 50% as the CNC addition increased from 0 to 0.5 wt.%, but it fell to a value slightly lower than that achieved using only pure water (i.e., no CNCs) as the CNC content was further increased to 1.0 wt.%. For the O/W emulsion, the addition of 0.8 wt.% CNCs reduced the COF by around 30% compared to that of the emulsion with no CNCs. Overall, the results showed that while the addition of a small quantity (6%) of oil to the water working fluid had a relatively small effect on the wear performance, the addition of an appropriate quantity of CNCs (i.e., 0.8 wt.%) resulted in a significantly lower COF and an improved wear surface.


2019 ◽  
Vol 55 (14) ◽  
pp. 2538-2549 ◽  
Author(s):  
Jing Li ◽  
Cunying Wang ◽  
Qian Tang ◽  
Mengjin Zhai ◽  
Qingqing Wang ◽  
...  

2018 ◽  
Vol 65 ◽  
pp. 05023 ◽  
Author(s):  
Kok Poh Wai ◽  
Chai Hoon Koo ◽  
Yean Ling Pang ◽  
Woon Chan Chong ◽  
Woei Jye Lau

Silver nanoparticles (NP) was successfully immobilized on polydopamine (PDA) supported polyethersulfone (PES) membrane via a redox reaction. Polyvinylpyrrolidone (PVP) was added into membrane dope solution as a pore-forming agent. Four pieces of membranes (M1, M2, M3 and M4) were fabricated with different active layer coatings to compare their morphological and performance properties. The differences between each sample were highlighted as follow: M1 (pristine PES), M2 (PES+PVP), M3 (PDA/PES+PVP) and M4 (Ag/PDA/PES+PVP). All membranes were characterized using scanning electron microscopy, energy dispersive X-ray spectroscopy, Fourier-transform infrared spectroscopy, X-ray diffraction and contact angle analysis. The membrane performance was examined using pure water permeability (PWP) test, antibacterial test and humic acid (HA) rejection test. Pristine M1 membrane showed that PWP of 27.16 LMH/bar and HA rejection of 84 %. In this study, it was found that the addition of PVP as a pore agent into the membrane M2 increased water flux but slightly deteriorated HA rejection. Coating of PDA on M3 and immobilizing silver NP on M4 membrane surface have improved HA rejection but compromised PWP. The results showed that membrane M4 carried excellent antibacterial property and highest HA rejection among all fabricated membranes.


2021 ◽  
Vol 45 (1) ◽  
pp. 1-10
Author(s):  
Davood Ghanbari ◽  
Samaneh BandehAli ◽  
Abdolreza Moghadassi

Abstract In this study, three types of ferrites nanoparticles including CoFe2O4, NiFe2O4, and ZnFe2O4 were synthesized by microwave-assisted hydrothermal method. The X-ray diffraction analysis (XRD), Fourier transform infrared spectroscopy (FTIR), and field emission scanning electron microscopy (FESEM) were employed to analyze synthesized nanoparticles and fabricated membranes. The morphology of membrane surface was investigated by surface images. The ability of ferrite nanoparticles was evaluated to the separation of sodium salt and heavy metals such as Cr2+, Pb2+, and Cu2+ from aqueous solutions. The modified membrane showed the enhancement of membrane surface hydrophilicity, porosity, and mean pore size. The results revealed a significant increase in pure water flux: 152.27, 178, and 172.68 L·m−2·h−1 for PES/0.001 wt% of CoFe2O4, PES/0.001 wt% NiFe2O4, and PES/0.001 wt% ZnFe2O4 NPs, respectively. Moreover, Na2SO4 rejection was reached 78% at 0.1 wt% of CoFe2O4 NPs. The highest Cr (II) rejection obtained 72% for PES/0.001 wt% of NiFe2O4 NPs while it was 46% for the neat PES membrane. The Pb(II) rejection reached above 75% at 0.1 wt% of CoFe2O4 NPs. The Cu(II) rejection was obtained 75% at 0.1 wt% of CoFe2O4 NPs. The ferrite NPs revealed the high potential of heavy metal removal in the filtration membranes.


Author(s):  
Yujia Tong ◽  
Wenlong Ding ◽  
Lijian Shi ◽  
Weixing Li

Abstract Ultrafiltration membranes are widely used for the treatment of papermaking wastewater. The antifouling performance of polyvinylidene fluoride (PVDF) ultrafiltration membranes can be improved by changing the hydrophilicity. Here, a novel amphiphilic copolymer material, PVDF grafted with N-isobutoxy methacrylamide (PVDF-g-IBMA), was prepared using ultraviolet-induced Cu(II)-mediated reversible deactivation radical polymerization. The amphipathic copolymer was used to prepare ultrafiltration membrane via NIPS. The prepared PVDF-g-IBMA ultrafiltration membrane was estimated using 1H NMR, FT-IR, and DSC. The contact angle, casting viscosity, and the permeation performance of the PVDF-g-IBMA ultrafiltration membrane were also determined. The pure water flux, bovine serum albumin removal rate, and pure water flux recovery rate of the PVDF-g-IBMA ultrafiltration membrane were 432.8 L·m−2·h−1, 88.4%, and 90.8%, respectively. Furthermore, for the treatment of actual papermaking wastewater, the chemical oxygen demand and turbidity removal rates of the membrane were 61.5% and 92.8%, respectively. The PVDF-g-IBMA amphiphilic copolymer ultrafiltration membrane exhibited good hydrophilicity and antifouling properties, indicating its potential for treating papermaking wastewater.


2013 ◽  
Vol 594-595 ◽  
pp. 877-881 ◽  
Author(s):  
Siti Hawa Mohamad ◽  
M.I. Idris ◽  
Hasan Zuhudi Abdullah

This paper focuses on performance of polyethersulfone (PES) ultrafiltration membrane coated with titanium dioxide (TiO2) nanoparticles and irradiated with UV light. The flat sheet membrane was prepared via phase inversion method, with two types of membrane; TiO2 coated PES membrane and UV irradiated TiO2 coated PES membrane. TiO2 suspension with concentration of 0.01, 0.03 and 0.05 wt.% were prepared and coated on the PES surface via dip coating. Membrane was immersed in all suspension for 15 minutes and 30 minutes. Then, prepared coated membranes were irradiated by 184 Watts UV lamp for 15 minutes. The performance of membranes was examined by permeation of humic acid. The morphology of membranes was analyzed by scanning electron microscopy (SEM). It was revealed that the pure water flux and humic acid permeation of UV irradiated TiO2 coated membrane was higher than TiO2 coated membrane. It can be concluded that TiO2 coated with 0.03 wt.% of suspension, 30 minutes and 15 minutes UV irradiation with 184 Watt light were determined as the optimum conditions for preparation ultrafiltration PES membrane.


2013 ◽  
Vol 65 (4) ◽  
Author(s):  
A. A. Abdulkarim ◽  
A. L. Ahmad ◽  
S. Ismail ◽  
B. S. Ooi

Flat sheet polyethersulfone (PES) ultrafiltration membranes were fabricated by a dry/wet induced phase inversion process. Various ranges of ZnO concentrations (from 0 –5 wt. %) were utilized in conjunction with 16.5 and 2.5 wt. % of polyethersulfone and polyvinylpyrrolidone (PVP), respectively. The prepared membranes were characterized using scanning electron microscope (SEM), contact angle (CA), and flux/rejection performance. The modified membranes were tested on humic acid removal. The hydrophilicity of PES membrane was improved after addition of zinc oxide nanoparticles in the casting solution. Highest pure water flux was obtained at 5 wt.% ZnO nanoparticles. The modified membranes with 2.5 wt. % of zinc oxide exhibited higher humic acid flux and rejection.


Sign in / Sign up

Export Citation Format

Share Document