Characterization of Sheet Buckling Subjected to Controlled Boundary Constraints

2002 ◽  
Vol 124 (3) ◽  
pp. 493-501 ◽  
Author(s):  
Jian Cao ◽  
Xi Wang ◽  
Francis Joe Mills

A wedge strip test is designed to study the onset and post-buckling behavior of a sheet under various boundary constraints. The device can be easily incorporated into a conventional tensile test machine and material resistance to buckling is measured as the buckling height versus the in-plane strain state. The design yields different but consistent buckling modes with easy changes of boundary conditions (either clamped or freed) and sample geometry. Experimental results are then used to verify a hybrid approach to buckling prediction, i.e., the combination of the FEM analysis and an energy-based analytical wrinkling criterion. The FEM analysis is used to obtain the stress field and deformed geometry in a complex forming condition, while the analytical solution is to provide the predictions less sensitive to artificial numerical parameters. A good agreement between experimental data and numerical predictions is obtained.

1994 ◽  
Vol 61 (4) ◽  
pp. 998-1000 ◽  
Author(s):  
M. Savoia ◽  
J. N. Reddy

The post-buckling of stiffened, cross-ply laminated, circular determine the effects of shell lamination scheme and stiffeners on the reduced load-carrying capacity. The effect of geometric imperfection is also included. The analysis is based on the layerwise shell theory of Reddy, and the “smeared stiffener” technique is used to account for the stiffener stiffness. Nu cylinders under uniform axial compression is investigated to merical results for stiffened and unstiffened cylinders are presented, showing that imperfection-sensitivity is strictly related to the number of nearly simultaneous buckling modes.


Author(s):  
Nizar Lajnef ◽  
Rigoberto Burgueño ◽  
Wassim Borchani ◽  
Yi Sun ◽  
Annelise Heeringa

One of the major obstacles that are limiting the development of deployable integrated sensing and actuation solutions is the scarcity of power. Converted energy from ambient loading in civil and mechanical structures is typically used as an alternative solution. Although, piezoelectric vibration harvesters have been widely used, these elements exhibit a narrow natural frequency response range, thus considerably limiting the levels of harvestable power. Most of the previously used methods focus only on modifying the transducer’s properties and configurations. These techniques do little to modify the stimuli from the source. In contrast, this work proposes to focus on the input signal generated within the structure by inducing amplified response amplitude and a frequency up-conversion toward the harvesters’ natural response spectrum. This paper introduces the concept of using mechanically-equivalent frequency modulators that can transform the low-amplitude and low-rate service and ambient deformations into an amplified input to the piezoelectric transducer. The introduced methods will allow energy generation and conversion for loads within the unexplored quasi-static frequency range (<< 1 Hz). The post-buckling behavior of bilaterally restrained columns and bistable plates is used for frequency up-conversion. A bimorph cantilever PVDF piezoelectric beam, attached to the columns and plates, are used for energy conversion. Experimental prototypes were built and tested to validate the introduced concept. The levels of extractable power are evaluated for different cases under varying input frequencies. Finally, numerical simulations provide insight into the scalability and performance of the developed concepts.


2008 ◽  
Vol 75 (4) ◽  
Author(s):  
Jian Zhao ◽  
Jianyuan Jia ◽  
Xiaoping He ◽  
Hongxi Wang

Based on the geometrical nonlinear theory of large deflection elastic beams, the governing differential equations of post-buckling behavior of clamped-clamped inclined beams subjected to combined forces are established. By using the implicit compatibility conditions to solve the nonlinear statically indeterminate problems of elastic beams, the strongly nonlinear equations formulated in terms of elliptic integrals are directly solved in the numerical sense. When the applied force exceeds the critical value, the numerical simulation shows that the inclined beam snaps to the other equilibrium position automatically. It is in the snap-through process that the accurate configurations of the post-buckling inclined beam with different angles are presented, and it is found that the nonlinear stiffness decreases as the midpoint displacement is increased according to our systematical analysis of the inward relations of different buckling modes. The numerical results are in good agreement with those obtained in the experiments.


2021 ◽  
Vol 60 (1) ◽  
pp. 342-351
Author(s):  
Małgorzata Chwał ◽  
Aleksander Muc

Abstract Mechanical properties of carbon nanotube (CNT)-based nanocomposites are broadly discussed in the literature. The influence of CNT arrangements on the elastic properties of nanocomposites based on the finite-element method (FEM) and representative volume element (RVE) approach is presented here. This study is an application of RVE modeling in the characterization of elastic behavior of CNT polymer nanocomposites. Our main contribution is the analysis of the impact of a nanotube arrangement on the elastic properties of nanocomposite to comprehensively determine the material constants. While most of the articles are focused on one distribution, not all material constants are determined. Our FEM analysis is compared with micromechanical models and other results from the literature. The current work shows that nanotube arrangements lead to different results of elastic properties. The analytical micromechanical models are consistent with the numerical results only for axial Young’s modulus and Poisson’s ratio, whereas other elastic constants are lower than the numerical predictions. The results of these studies indicate that FEM can predict nanocomposite mechanical properties with good accuracy. This article is helpful and useful to comprehensively understand the influence of CNT arrangements on the elastic properties of nanocomposites.


1983 ◽  
Vol 11 (1) ◽  
pp. 3-19
Author(s):  
T. Akasaka ◽  
S. Yamazaki ◽  
K. Asano

Abstract The buckled wave length and the critical in-plane bending moment of laminated long composite strips of cord-reinforced rubber sheets on an elastic foundation is analyzed by Galerkin's method, with consideration of interlaminar shear deformation. An approximate formula for the wave length is given in terms of cord angle, elastic moduli of the constituent rubber and steel cord, and several structural dimensions. The calculated wave length for a 165SR13 automobile tire with steel breakers (belts) was very close to experimental results. An additional study was then conducted on the post-buckling behavior of a laminated biased composite beam on an elastic foundation. This beam is subjected to axial compression. The calculated relationship between the buckled wave rise and the compressive membrane force also agreed well with experimental results.


1986 ◽  
Vol 108 (2) ◽  
pp. 131-137
Author(s):  
D. Moulin

This paper presents a simplified method to analyze the buckling of thin structures like those of Liquid Metal Fast Breeder Reactors (LMFBR). The method is very similar to those used for the buckling of beams and columns with initial geometric imperfections, buckling in the plastic region. Special attention is paid to the strain hardening of material involved and to possible unstable post-buckling behavior. The analytical method uses elastic calculations and diagrams that account for various initial geometric defects. An application of the method is given. A comparison is made with an experimental investigation concerning a representative LMFBR component.


Author(s):  
Riccardo Da Soghe ◽  
Cosimo Bianchini ◽  
Carl M. Sangan ◽  
James A. Scobie ◽  
Gary D. Lock

This paper deals with a numerical study aimed at the characterization of hot gas ingestion through turbine rim seals. The numerical campaign focused on an experimental facility which models ingress through the rim seal into the upstream wheel-space of an axial-turbine stage. Single-clearance arrangements were considered in the form of axial- and radial-seal gap configurations. With the radial-seal clearance configuration, CFD steady-state solutions were able to predict the system sealing effectiveness over a wide range of coolant mass flow rates reasonably well. The greater insight of flow field provided by the computations illustrates the thermal buffering effect when ingress occurs: for a given sealing flow rate, the effectiveness on the rotor was significantly higher than that on the stator due to the axial flow of hot gases from stator to rotor caused by pumping effects. The predicted effectiveness on the rotor was compared with a theoretical model for the thermal buffering effect showing good agreement. When the axial-seal clearance arrangement is considered, the agreement between CFD and experiments worsens; the variation of sealing effectiveness with coolant flow rate calculated by means of the simulations display a distinct kink. It was found that the “kink phenomenon” can be ascribed to an over-estimation of the egress spoiling effects due to turbulence modelling limitations. Despite some weaknesses in the numerical predictions, the paper shows that CFD can be used to characterize the sealing performance of axial- and radial-clearance turbine rim seals.


2012 ◽  
Vol 28 (1) ◽  
pp. 97-106 ◽  
Author(s):  
J. D. Yau ◽  
S.-R. Kuo

ABSTRACTUsing conventional virtual work method to derive geometric stiffness of a thin-walled beam element, researchers usually have to deal with nonlinear strains with high order terms and the induced moments caused by cross sectional stress results under rotations. To simplify the laborious procedure, this study decomposes an I-beam element into three narrow beam components in conjunction with geometrical hypothesis of rigid cross section. Then let us adopt Yanget al.'s simplified geometric stiffness matrix [kg]12×12of a rigid beam element as the basis of geometric stiffness of a narrow beam element. Finally, we can use rigid beam assemblage and stiffness transformation procedure to derivate the geometric stiffness matrix [kg]14×14of an I-beam element, in which two nodal warping deformations are included. From the derived [kg]14×14matrix, it can take into account the nature of various rotational moments, such as semi-tangential (ST) property for St. Venant torque and quasi-tangential (QT) property for both bending moment and warping torque. The applicability of the proposed [kg]14×14matrix to buckling problem and geometric nonlinear analysis of loaded I-shaped beam structures will be verified and compared with the results presented in existing literatures. Moreover, the post-buckling behavior of a centrally-load web-tapered I-beam with warping restraints will be investigated as well.


Sign in / Sign up

Export Citation Format

Share Document