Experimental Finite Element Analysis of Temperature Distribution During Arc Welding

1989 ◽  
Vol 111 (1) ◽  
pp. 9-18 ◽  
Author(s):  
Elijah Kannatey-Asibu ◽  
Noboru Kikuchi ◽  
Abdel-Rahim Jallad

Analysis of temperatures and associated cooling rates that arise during welding is essential in determining the final mechanical properties and load carrying capacity of the weldment. Due to the complexity of the fundamental thermal equations and the heat distribution, as well as latent heat effects, numerical techniques have been developed in recent years for weld temperature analysis. However, the higher temperature gradients in the vicinity of the weld pool require a highly refined mesh that results in extensive computation time using conventional numerical techniques. We developed a moving finite element grid with an adaptation scheme that permits mesh refinement only in the required regions, thereby achieving a more efficient computation for a desired accuracy. The numerical simulation results for a 2-dimensional analysis correlate well with temperature measurements made with thermocouples for the welding conditions used in the analysis.

Author(s):  
Claudia Wittkowske ◽  
Stefan Raith ◽  
Maximilian Eder ◽  
Alexander Volf ◽  
Jan S. Kirschke ◽  
...  

AbstractA semi-automated workflow for evaluation of diaphyseal fracture treatment of the femur has been developed and implemented. The aim was to investigate the influence of locking compression plating with diverse fracture-specific screw configurations on interfragmentary movements (IFMs) with the use of finite element (FE) analysis. Computed tomography (CT) data of a 22-year-old non-osteoporotic female were used for patient specific modeling of the inhomogeneous material properties of bone. Hounsfield units (HU) were exported and assigned to elements of a FE mesh and converted to mechanical properties such as the Young’s modulus followed by a linear FE analysis performed in a semi-automated fashion. IFM on the near and far cortex was evaluated. A positive correlation between bridging length and IFM was observed. Optimal healing conditions with IFMs between 0.5 mm and 1 mm were found in a constellation with a medium bridging length of 80 mm with three unoccupied screw holes around the fracture gap. Usage of monocortical screws instead of bicortical ones had negligible influence on the evaluated parameters when modeling non-osteoporotic bone. Minimal user input, automation of the procedure and an efficient computation time ensured quick delivery of results which will be essential in a future clinical application.


1998 ◽  
Vol 51 (5) ◽  
pp. 303-320 ◽  
Author(s):  
D. W. Nicholson ◽  
N. W. Nelson ◽  
B. Lin ◽  
A. Farinella

Finite element analysis of hyperelastic components poses severe obstacles owing to features such as large deformation and near-incompressibility. In recent years, outstanding issues have, to a considerable extent, been addressed in the form of the hyperelastic element available in commercial finite element codes. The current review article, which updates and expands a 1990 article in Rubber Reviews, is intended to serve as a brief exposition and selective survey of the recent literature. Published simulations are listed. Rubber constitutive models and the measurement of their parameters are addressed. The underlying incremental variational formulation is sketched for thermomechanical response of compressible, incompressible and near-incompressible elastomers. Coupled thermomechanical effects and broad classes of boundary conditions, such as variable contact, are encompassed. Attention is given to advanced numerical techniques such as arc length methods. Remaining needs are assessed. This review article contains 142 references.


2021 ◽  
Vol 156 (A4) ◽  
Author(s):  
A Cubells ◽  
Y Garbatov ◽  
C Guedes Soares

The objective of the present study is to develop a new approach to model the initial geometrical imperfections of ship plates by using Photogrammetry. Based on images, Photogrammetry is able to take measurements of the distortions of plates and to catch the dominant surface shape, including the deformations of the edges. Having this data, it is possible to generate faithful models of plate surface based on third order polynomial functions. Finally, the maximum load- carrying capacity of the plates is analysed by performing a nonlinear finite element analysis using a commercial finite element code. Three un-stiffened and four stiffened plates have been modelled and analysed. For each plate, two initial imperfection models have been generated one, based on photogrammetric measurements and the other, based on the trigonometric Fourier functions. Both models are subjected to the same uniaxial compressive load and boundary conditions in order to study the ultimate strength.


2011 ◽  
Vol 199-200 ◽  
pp. 749-753
Author(s):  
Xiao Bo Zuo ◽  
Jian Min Wang ◽  
Chao Liang Guan ◽  
Juan Li

The static performance of an aerostatic bearing with angled surface self-slot-compensation is analyzed. The consistent condition was applied to unitize the Reynolds equation of different forms and the finite element method (FEM) was used to solve the equation. The load carrying capacity (LCC) and the stiffness of the bearing was obtained and the influence of the geometric parameters was discussed. It is concluded that this self-compensating aerostatic bearing can achieve a good performance; the geometric parameters of the gap are interactive, and should be rationally matched.


1983 ◽  
Vol 10 (2) ◽  
pp. 287-294 ◽  
Author(s):  
Hisham Hafez ◽  
George Abdel-Sayed

The present paper introduces some improvements in the finite element analysis of soil–steel structures. It applies two-noded spring-type interface elements and accounts for the compaction effects during construction simulation. The analyses are performed in increments using a hyperbolic stress–strain relationship for the nonlinear behaviour of the soil and take into account the shear or tension failure in the soil elements. Also, a combination of constant and compatible linear strain elements for soil is used to increase the accuracy of the analysis around the conduit while keeping the storage requirement and computation time for the numerical solution manageable.The analytical results show satisfactory agreement with those obtained experimentally. They also show that the American Association of State Highway and Transportation Officials (AASHTO) provisions overestimate the thrust due to live load and underestimate the thrust due to dead load. A better comparison is found with the Ontario Highway Bridge Design Code (OHBDC).


2014 ◽  
Vol 496-500 ◽  
pp. 590-593
Author(s):  
Guan Nan Chu ◽  
Qing Yong Zhang ◽  
Guo Chun Lu

In order to improve the load-carrying properties of pressure structure, a new method to improve the external bearing limit is put forward and residual stress is used. Based on finite element analysis, finite element models of cylinder pressure structure of submersible vehicle are established to produce hoop residual stress in the process of outward expansion. According to a lot of data of simulation experiments, the result indicates that hoop residual stress is compressive on the outer surface of the pipe and the hoop stress keeps tensile on the inside surface. This kind of stress distribution is helpful to the cylinder structure and can improve its bearing capacity of external pressure. Moreover, the rules of the residual stress are got. The influences of physical dimension, yield strength of material and the expansion rate to the stress distribution are analyzed. The measures to produce the stress distribution are also presented.


2005 ◽  
Vol 42 (3) ◽  
pp. 876-891 ◽  
Author(s):  
M A Ismail

This paper investigates the performance of a cement-stabilized retaining wall as a potentially economic solution for supporting vertical cuts in roads and embankments. This investigation was carried out through a comprehensive numerical and experimental program in which the stabilized wall was treated as a c′–ϕ soil. To optimize the design of the stabilized wall, a plane-strain finite element analysis was carried out, using the PLAXIS code, in a parametric study that varied the wall geometry and the shear strength parameters for both the wall and its surrounding soil. The performance of the stabilized retaining wall was verified by a centrifuge model test carried out at an equivalent acceleration of 67g for a sand treated with 3% Portland cement. The results have shown that the load-carrying capacity of the wall is affected primarily by both the cementation of the wall and the friction angle of the surrounding soil. There exists a threshold of cementation beyond which the stability does not increase when the failure mechanism is located completely inside the in situ soil. This critical cementation appears to be a crucial factor in maintaining an economic design for this type of wall. Centrifuge test results confirmed the satisfactory behaviour of cement-stabilized retaining walls.Key words: cement stabilization, retaining wall, cohesion, finite element, centrifuge testing.


Author(s):  
Michae¨l Martinez ◽  
George Brown

The development of finite element analysis, in terms of simulation power and theoretical model accuracy, enables one to understand and simulate industrial processes more precisely, especially those involving non linear behaviour and analysis. Reeled pipe technology is one of these, and has a lot to gain from this increasing efficiency. In the reel-lay process the pipe is first reeled onto a drum on a vessel for transportation. During offshore installation the pipe is unreeled, straightened and deployed into the sea. During the process, the pipe is fully and cyclically plastified. Plastification modifies the pipe properties, which is not by itself detrimental but should be understood by the designer. Pipe properties are affected in three ways: geometrical shape – reeling and straightening induce some residual ovalisation; mechanical properties – yield stress, hardening slope, isotropy are modified; and fatigue properties. Technip and IFP have studied these property evolutions for many years, both from an experimental and a numerical point of view. The present paper discusses the first two points. A wide experimental programme has been performed. Full scale pipes were reeled and straightened on a bending rig device especially built for that purpose. Pipe ovalisation was monitored through the whole process. Pipe mechanical properties were also fully characterised in the pipe axial, hoop and thickness directions, both in tension and compression, before and after reeling process. Extruded and UOE pipes were tested and characterised. Pipe initial properties are dependent on the manufacturing process but they are modified by the reeling process. Reeling induces some anisotropy that cannot be properly accounted for by usual plasticity models. Finite element simulations with Abaqus software, using the material behaviour of unreeled pipe, underestimate stiffness evolution in the hoop direction and overestimate ovalisation induced by the reeling process. Anisotropy has indeed a great effect on ovalisation that results from an interaction between axial and hoop loading. Hardening is also a key parameter. A new plasticity model has been written in an Abaqus User Material Model, known as UMAT. The new model is based on an anisotropic Hill criterion and special attention is paid to the hardening. This new model reduces by more than two the error on ovality estimation, and gives a realistic prediction of material anisotropy evolution through the process. Although, the tuning of the model coefficients is more complex than for usual models, its use is quite straightforward and does not increase computation time.


2014 ◽  
Vol 607 ◽  
pp. 573-576
Author(s):  
En Guang Zhang ◽  
Li Wang ◽  
Wen Ju Shan

The structure and the load-carrying capability of the front board of injection molding machine are more complex. The error of the approximation algorithm employed in engineering is larger so that the board may become invalid in the process of using, The finite element analysis can obtain the stress distribution in the parts so as to improve the accuracy of calculation and the quality of design; through The topology optimization analysis will take the initiative to find the optimal plan, which provides the theoretical basis for the improvement of the load-carrying capability and the structure design of board. This paper have conducted a parametric design, finite element analysis and the topology optimization design for a motional board of the injection molding machine using “Advanced simulation” of NX8.0, and get a quantitative conclusion of that the motional board volume is reduced and its stiffness is significantly enhanced.


2021 ◽  
Vol 6 (3) ◽  
Author(s):  
Nicholas S Gukop ◽  
Peter M Kamtu ◽  
Bildad D Lengs ◽  
Alkali Babawuya ◽  
Adesanmi Adegoke

Investigation on the effect of mesh density on the analysis of simple support bracket was conducted using Finite element analysis simulation. Multiple analyses were carried out with mesh refinement from coarse mesh of 3.5 mm to a high-quality fine mesh with element size of 0.35 mm under 15 kN loading. Controlled mesh analysis was also conducted for the same loading. At the mesh size of 0.35 mm, it has a maximum stress value of 42.7 MPa. As the element size was reduced, it was observed that below 1.5 mm (higher mesh density) there was no significant increase in the peak stress value; the stress at this level increased by 0.028 % only. Further decreased of mesh size shows insignificant effect on the stresses and displacements for the high-quality fine mesh analysis. The application of High-quality mesh control analysis showed a significant reduction in the computation time by more than 90%. Regardless of the reduction in computation time, the controlled mesh analysis achieved more than 99% accuracy as compared to high-quality fine mesh analysis. Keywords— Computation time, Finite Element Analysis, Mesh density, Support Bracket.


Sign in / Sign up

Export Citation Format

Share Document