Infrared Radiative Properties of Heavily Doped Silicon at Room Temperature

2009 ◽  
Vol 132 (2) ◽  
Author(s):  
S. Basu ◽  
B. J. Lee ◽  
Z. M. Zhang

This paper describes an experimental investigation on the infrared radiative properties of heavily doped Si at room temperature. Lightly doped Si wafers were ion-implanted with either boron or phosphorus atoms, with dosages corresponding to as-implanted peak doping concentrations of 1020 and 1021 cm−3; the peak doping concentrations after annealing are 3.1×1019 and 2.8×1020 cm−3, respectively. Rapid thermal annealing was performed to activate the implanted dopants. A Fourier-transform infrared spectrometer was employed to measure the transmittance and reflectance of the samples in the wavelength range from 2 μm to 20 μm. Accurate carrier mobility and ionization models were identified after carefully reviewing the available literature, and then incorporated into the Drude model to predict the dielectric function of doped Si. The radiative properties of doped Si samples were calculated by treating the doped region as multilayer thin films of different doping concentrations on a thick lightly doped Si substrate. The measured spectral transmittance and reflectance agree well with the model predictions. The knowledge gained from this study will aid future design and fabrication of doped Si microstructures as wavelength selective emitters and absorbers in the midinfrared region.

Author(s):  
S. Basu ◽  
B. J. Lee ◽  
Z. M. Zhang

This paper describes an experimental investigation on the infrared radiative properties of heavily-doped silicon (Si) at room temperature. Lightly-doped Si wafers were ion implanted with boron and phosphorus atoms to doping concentrations of 1×1020 and 1×1021 cm−3. Rapid thermal annealing was performed to activate the implanted dopants. A Fourier-transform infrared spectrometer was employed to measure the normal transmittance as well as reflectance of the samples in the spectral region from 2 to 20 μm. Accurate carrier mobility and ionization models were identified after carefully reviewing the available literature, and then incorporated into Drude model to predict the dielectric function of doped Si. The radiative properties of doped Si samples were calculated by treating the doped region as multilayer thin films of different doping concentrations on a thick Si substrate. The measured spectral transmittance and reflectance agree well with the model predictions. The results obtained from this study will facilitate the future applications of heavily-doped Si in semiconductor as well as MEMS devices.


Author(s):  
A.C. Daykin ◽  
C.J. Kiely ◽  
R.C. Pond ◽  
J.L. Batstone

When CoSi2 is grown onto a Si(111) surface it can form in two distinct orientations. A-type CoSi2 has the same orientation as the Si substrate and B-type is rotated by 180° degrees about the [111] surface normal.One method of producing epitaxial CoSi2 is to deposit Co at room temperature and anneal to 650°C.If greater than 10Å of Co is deposited then both A and B-type CoSi2 form via a number of intermediate silicides .The literature suggests that the co-existence of A and B-type CoSi2 is in some way linked to these intermediate silicides analogous to the NiSi2/Si(111) system. The phase which forms prior to complete CoSi2 formation is CoSi. This paper is a crystallographic analysis of the CoSi2/Si(l11) bicrystal using a theoretical method developed by Pond. Transmission electron microscopy (TEM) has been used to verify the theoretical predictions and to characterise the defect structure at the interface.


2001 ◽  
Vol 703 ◽  
Author(s):  
Huiping Xu ◽  
Adam T. Wise ◽  
Timothy J. Klemmer ◽  
Jörg M. K. Wiezorek

ABSTRACTA combination of XRD and TEM techniques have been used to characterize the response of room temperature magnetron sputtered Fe-Pd thin films on Si-susbtrates to post-deposition order-annealing at temperatures between 400-500°C. Deposition produced the disordered Fe-Pd phase with (111)-twinned grains approximately 18nm in size. Ordering occurred for annealing at 450°C and 500°C after 1.8ks, accompanied by grain growth (40-70nm). The ordered FePd grains contained (111)-twins rather than {101}-twins typical of bulk ordered FePd. The metallic overlayers and underlayers selected here produced detrimental dissolution (Pt into Fe-Pd phases) and precipitation reactions between Pd and the Si substrate.


2009 ◽  
Vol 19 (37) ◽  
pp. 6688 ◽  
Author(s):  
Zesheng An ◽  
Junsheng Yu ◽  
Benoit Domercq ◽  
Simon C. Jones ◽  
Stephen Barlow ◽  
...  

2014 ◽  
Vol 07 (06) ◽  
pp. 1440007
Author(s):  
Michal Szot ◽  
Krzysztof Dybko ◽  
Piotr Dziawa ◽  
Leszek Kowalczyk ◽  
Viktor Domukhovski ◽  
...  

The electric and thermoelectric properties of novel, CdTe / PbTe layered nanocomposite material are investigated. The molecular beam epitaxy (MBE) method was used for preparation of samples with well controlled distances (from 20 to 70 nm) between the layers of CdTe nanograins embedded in PbTe thermoelectric matrix as well as with number of these layers from 2 to 10. The Hall effect measurements performed in temperature range from 4–300 K revealed that carrier mobility is strongly affected by scattering on CdTe grain boundaries. The observation of Shubnikov-de Haas oscillations confirms high quality of the samples and allows determination of effective mass of conducting electrons m* = 0.04m0. The measurements of the room temperature Seebeck coefficient together with electrical conductivity lead to the power factors which are comparable to those reported in PbTe / CdTe polycrystalline solid solutions.


2018 ◽  
Vol 32 (25) ◽  
pp. 1850298
Author(s):  
Jie Shi ◽  
Mao-Rong Wang ◽  
Kai Zhong ◽  
Chu Liu ◽  
Jia-Lin Mei ◽  
...  

We demonstrate a method for obtaining optical coefficients over a broad terahertz spectral range from 1.5 THz to 16 THz at room temperature. Based on the interferograms directly acquired by a Fourier transform infrared spectrometer (FTIR), multi-beam interference principle combining Fresnel’s formula is employed to extract the refraction index and the extinction coefficient, giving the basis for calculating dielectric coefficients. It avoids the uncertainty and phase instability while using Kramers–Kronig (KK) relations and overcomes the limited frequency range of terahertz time-domain spectroscopy (TDS). Moreover, this method has better stability and is needless of cutting useful information between neighboring interference peaks for thin samples compared with TDS, making it a general processing method for interferograms and a good alternative for terahertz dielectric measurement.


2020 ◽  
Vol 62 (3) ◽  
pp. 386
Author(s):  
Н.И. Сорокин ◽  
Ю.В. Писаревский ◽  
В.В. Гребенев ◽  
В.А. Ломонов

The impedance measurements of Li2B4O7 single crystal with Ag electrodes in the frequency range 1-3*107 Hz at room temperature have been made. The Li2B4O7 crystal (sp. gr. I41cd, Z = 8) was oriented along crystallographic axis c. Contributions from the bulk crystal and crystal / electrode boundaries in the impedance hodograph of the Ag | Li2B4O7 | Ag system were selected. The structural mechanism of lithium-ion transport in Li2B4O7 has been discussed. Based on electrophysical and structural data, the conductivity σdc = 2.3 × 10–9 S / cm, carrier mobility (vacancies VLi) μmob = 6 × 10−10 cm2 / sV and their concentration nmob = 2.4 × 1019 cm – 3 (0.14% of the amount of lithium in the crystal lattice) have been determined.


2019 ◽  
Vol 19 (6) ◽  
pp. 1686-1694 ◽  
Author(s):  
Agman Gupta ◽  
Chelli Sai Manohar ◽  
Belliraj Siva Kumar

Abstract Given widespread fluoride in the ground water, there is a need for effective defluoridation in several geographical areas. In this regard, we explored heavily doped cationic nano-composites of hydroxyapatite (HA) given its surface chemistry for adsorption of the specific anion. We synthesized and extensively characterized HA nano-rods (HA-NR), Al/Mg-HA nanocomposites and amorphous aluminum hydroxide, and optimized their efficient defluoridation. The kinetics and thermodynamics of adsorption were further evaluated to establish the mechanistic rationale and its spontaneity. We report the optimized ideal adsorbents for the near-total removal of fluoride that demonstrated 99.99% and 99.98% efficiency with adsorption capacities of 83.3 and 81.3mg/g respectively. The adsorbent composites were (Mg-HA)-Al(OH)3 and (HA-NR)-Al(OH)3 in 1:1 ratio. The optimal conditions for defluoridation were 25mg of adsorbent in 25ml (10mg/L) fluoride solution at room temperature agitated for 10h in the pH range of 4.88–7.20.


Sign in / Sign up

Export Citation Format

Share Document