Aerodynamic Oscillations in Suspension Bridges

1948 ◽  
Vol 15 (2) ◽  
pp. 151-159
Author(s):  
Edmund Pinney

Abstract Following the failure in 1940 of the Tacoma Narrows suspension bridge by wind-driven oscillations, the need for developing in advance adequate data concerning wind speeds at which such oscillations occur became apparent. Numerous studies and experiments were undertaken on the subject, the present paper dealing with a symmetrical suspension bridge having two towers in which both sidespan and tower effects are considered. A modification is given to include the effects of roadbed “slats,” and a method is outlined for obtaining flutter speeds from roadbed section models which may fit into standard wind tunnels. The theory is applied to the Tacoma Narrows Bridge.

2021 ◽  
Vol 1 (4) ◽  
pp. 559-569
Author(s):  
Sri Wulandari Pratiwi ◽  
Arjudin Arjudin ◽  
Nani Kurniati ◽  
Sripatmi Sripatmi

bridge from the concept of ordinary differential equations and to determine solving differential equations and capitalizing suspension bridges, with the suspension bridge in Gerung, West Lombok is a modeling. The type of this research is Quantitative research with development methods literature. The subject in this research retaining ropes on suspension bridges. The data collected in the form of journals or articles from various related sources model of the retaining rope on a computed suspension bridge analyzed and concluded by the researcher through data analysis techniques by using the type of research triangulation principle and theoretical triangulation based on the results of data analysis, it was found that differential equations can be applied to modeling suspension bridges through first-order ordinary differential equations with the form of capitalization equations with the solution , with the interval in . The Gerung suspension bridge has its retaining rope modeling solution is , in 12 right suspensions at each hose in the interval the related variable is the height of the retaining rope and x the independent variable is the distance from the lowest restraint to the rope to be measured.


2014 ◽  
Vol 633-634 ◽  
pp. 1263-1266
Author(s):  
Huang Yu

For modern long-span bridges, both the optimization of aerodynamic shape and the increase of torsional stiffness according to the result of the wind tunnel experiment could avoid the flutter instability.Vortex-inducedvibration with relatively large amplitude happens easily at low wind speeds. In this paper, based on wind tunnel experiment, by studying on the vortex-induced vibration characteristics of a long-span suspension bridge with single cable plane, aerodynamic measures for easing the vortex-induced vibration are given.


2021 ◽  
Vol 9 (3B) ◽  
Author(s):  
Mohamed Abdel-Rohman ◽  

To increase the onset galloping wind speed, after which galloping of the flexible suspension bridges occurs, resulting in the failure of these bridges due to wind, semiactive control mechanisms could be installed in the bridge to increase its damping. The time delay in processing the active control force and the actuator’s dynamics are, however, major practical problems, which may affect the dynamic stability of the semiactive controlled structure. This paper shows the effect of the time delay on the magnitude of the onset galloping wind speed for a suspension bridge controlled by a semiactive control mechanism. It is shown that the time delay decreases the magnitude of the onset galloping wind speed. This makes the suspended cables in the suspension bridge susceptible for galloping, which may cause progressive collapse for the bridge at low mean wind speeds. This could be avoided if the active control force is designed considering the time delay effect.


2006 ◽  
Vol 11 (3) ◽  
pp. 293-318 ◽  
Author(s):  
M. Zribi ◽  
N. B. Almutairi ◽  
M. Abdel-Rohman

The flexibility and low damping of the long span suspended cables in suspension bridges makes them prone to vibrations due to wind and moving loads which affect the dynamic responses of the suspended cables and the bridge deck. This paper investigates the control of vibrations of a suspension bridge due to a vertical load moving on the bridge deck with a constant speed. A vertical cable between the bridge deck and the suspended cables is used to install a hydraulic actuator able to generate an active control force on the bridge deck. Two control schemes are proposed to generate the control force needed to reduce the vertical vibrations in the suspended cables and in the bridge deck. The proposed controllers, whose design is based on Lyapunov theory, guarantee the asymptotic stability of the system. The MATLAB software is used to simulate the performance of the controlled system. The simulation results indicate that the proposed controllers work well. In addition, the performance of the system with the proposed controllers is compared to the performance of the system controlled with a velocity feedback controller.


2013 ◽  
Vol 405-408 ◽  
pp. 1616-1622
Author(s):  
Guo Hui Cao ◽  
Jia Xing Hu ◽  
Kai Zhang ◽  
Min He

In order to research on mechanical properties of flexible suspension bridges, a geometric nonlinear analysis method was used to simulate on the experimental results, and carried on static loading test finally. In the loading test process, the deformations were measured in critical section of the suspension bridge, and displacement values of measured are compared with simulation values of the finite element simulation. Meanwhile the deformations of the main cable sag are observed under classification loading, the results show that the main cable sag increment is basically linear relationship with the increment of mid-span loading and tension from 3L/8 and 5L/8 to L/2 section, the main cable that increasing unit sag required mid-span loads and tension are gradually reduce in near L/4 and 3L/4 sections and gradually increase in near L/8 and 7L/8 sections and almost equal in near L/2, 3L/8 and 5L/8 sections. From the experimental results, the flexible suspension bridge possess good mechanical properties.


1966 ◽  
Vol 70 (665) ◽  
pp. 553-560 ◽  
Author(s):  
C. Scruton

SummaryPresent day structural forms and methods of fabrication have considerably increased the importance of wind as a design consideration. For estimations of the overall stability of a structure and of the local pressure distribution on the cladding, a knowledge of the maximum steady or time-averaged wind loads is usually sufficient. Mind tunnel tests to determine the wind loading coefficients are often made in smooth uniform flow, but for more accurate data account must be taken of the effects of the vertical gradient of wind speed and the turbulence of natural winds. Further research is needed into these effects and also into methods of obtaining a sufficient representation of the natural wind in the wind tunnel.There are a number of ways by which wind excites structures into oscillation; among these are vortex excitation, galloping, proximity effects including buffeting, stalling flutter and classical flutter. The vortex and galloping excitation might be expected to be especially sensitive to the turbulence properties of the air flow. Also, in the absence of any mechanism for instability, atmospheric turbulence may directly excite oscillations through the random forcing by the pressure fluctuations which it produces. Further understanding of this problem must come through research into the effects of turbulence (and to the extent to which these effects may be disregarded), but the range of the conditions is so vast and complicated that it seems unlikely that sufficient aerodynamic and wind data will be accumulated to permit the response of a proposed structure to be calculated with reasonable certainty, and for major projects it is anticipated that comprehensive tests on aeroelastic models in wind tunnels with appropriate turbulent air flow will continue to offer the more reliable predictions.The air flow around buildings is of concern inasmuch as it influences the dispersal of combustion and other gases from the smokestack and also in its effect on the speeds and turbulence of the wind over areas used by pedestrians. The erection of a tall building may cause an increase in wind speeds and gustiness at ground level. These problems of the external flow over buildings are readily examined in wind tunnels. For this purpose tunnels with large working sections are desirable to permit a sufficiently wide area of the neighbourhood to be represented.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Hao Tian ◽  
Jiji Wang ◽  
Sugong Cao ◽  
Yuanli Chen ◽  
Luwei Li

This paper presents a reliability analysis to assess the safety of corroded main cables of a long-span suspension bridge. A multiscale probability model was established for the resistance of the main cables considering the length effect and the Daniels effect. Corrosion effects were considered in the wire scale by relating the test results from accelerated corrosion tests to the corrosion stages and in the cable scale by adopting a corrosion stage distribution of the main cable section in NCHRP Report 534. The load effects of temperature, wind load, and traffic load were obtained by solving a finite element model with inputs from in-service monitoring data. The so-obtained reliability index of the main cables reduces significantly after operation for over 50 years and falls below the design target value due to corrosion effects on the mechanical properties of the steel wire. Multiple measures should be taken to delay the corrosion effects and ensure the safety of the main cables in the design service life.


2014 ◽  
Vol 501-504 ◽  
pp. 1107-1111
Author(s):  
Miao Feng

Based on Large-displacement Non-linear Elastic Generalized Variational Principle, coupling effect of axial and flexural action, shearing strain energy, torsional strain energy of stiffening girder were considered, the large-displacement incomplete generalized potential energy functional of space coupling free vibration of a three-span self-anchored cable-stayed suspension bridge was presented. By constraint variation, fundamental differential equations of vertical flexural vibration, lateral flexural vibration, longitudinal vibration and torisional vibration were formulated, also presented the equations for the main tower with respect to longitudinal and lateral vibration. The linear free vibration differential equation was obtained when the nonlinear items were discarded. This approach provides theoretical basis for analysis of natural vibration character of self-anchored cable-stayed suspension bridges.


2012 ◽  
Vol 461 ◽  
pp. 151-154
Author(s):  
Dai Yong Jia ◽  
Lu Yan Sui ◽  
Ming Lai He

In this study, an experiment platform was built up to determine the key parameter, mass transfer coefficient, of the ventilation and dehumidification process in main cable of suspension bridge. On the basis of experimental studies, an empirical formula of the mass transfer coefficient was obtained, which can greatly contribute to control the content of moisture in the main cable of suspension bridges.


2018 ◽  
Vol 196 ◽  
pp. 01017
Author(s):  
Anatolij Konovalov ◽  
Marina Pustovalova

Suspended structures that are used extensively in construction of motorway and pedestrian bridges allow bridging wide spans without having to install intermediate supports. Being less stiff in comparison to girder and arch bridges, suspension bridges require their dynamic properties to be controlled [1, 2]. This is a vital task when it comes to suspension bridges. Several engineering arrangements are available to control the dynamic properties of the structures [3]. This paper addresses the use of active dampers [4] installed on the tops of the towers as the means to control vibrations of a suspension bridge. To this end, a planar 3D model of suspension bridge was built using ANSYS software. The authors compared stress-strain behavior and dynamic properties of the models with and without active vibration dampers. In contrast to the initial model, the model of a bridge equipped with active dampers exhibits less displacement in all cross-sections. Thus, the displacements are reduced 1.7 times in the middle of the central span of suspended stiffening truss; 2.7 times in the middle of the end span; and displacements of the top of the bridge tower are 1.6 times less. The modal analysis has shown that in the model with active dampers the frequency of transverse vibrations at the tower tops has increased 1.9 times, while vertical vibrations have increased within 23%. Under maximum applied overpressure in the active damper, torsional vibrations of the structure have increased 2.4 times as compared to the initial model. The results obtained by the authors allow for the conclusion that active dampers are useful tools for controlling the dynamic properties of a suspension bridge.


Sign in / Sign up

Export Citation Format

Share Document