scholarly journals Fuel Economy of a Multimode Combustion Engine With Three-Way Catalytic Converter

Author(s):  
Sandro P. Nüesch ◽  
Anna G. Stefanopoulou ◽  
Li Jiang ◽  
Jeff Sterniak

Highly diluted, low temperature homogeneous charge compression ignition (HCCI) combustion leads to ultralow levels of engine-out NOx emissions. A standard drive cycle, however, would require switches between HCCI and spark-ignited (SI) combustion modes. In this paper we quantify the efficiency benefits of such a multimode combustion engine, when emission constraints are to be met with a three-way catalytic converter (TWC). The TWC needs unoccupied oxygen storage sites in order to achieve acceptable performance. The lean exhaust gas during HCCI operation, however, fills the oxygen storage and leads to a drop in NOx conversion efficiency. If levels of tailpipe NOx become unacceptable, a mode switch to a fuel rich combustion mode is necessary in order to deplete the oxygen storage and restore TWC efficiency. The resulting lean-rich cycling leads to a penalty in fuel economy. Another form of penalty originates from the lower combustion efficiency during a combustion mode switch itself. In order to evaluate the impact on fuel economy of those penalties, a finite state model for combustion mode switches is combined with a longitudinal vehicle model and a phenomenological TWC model, focused on oxygen storage. The aftertreatment model is calibrated using combustion mode switch experiments from lean HCCI to rich spark-assisted HCCI (SA-HCCI) and back. Fuel and emission maps acquired in steady-state experiments are used. Different depletion strategies are compared in terms of their influence on drive cycle fuel economy and NOx emissions. It is shown that even an aggressive lean-rich cycling strategy will marginally satisfy the cumulated tailpipe NOx emission standards under warmed-up conditions. More notably, the cycling leads to substantial fuel penalties that negate most of HCCI's efficiency benefits.

Author(s):  
Sandro P. Nüesch ◽  
Anna G. Stefanopoulou ◽  
Li Jiang ◽  
Jeffrey Sterniak

Highly diluted, low temperature homogeneous charge compression ignition (HCCI) combustion leads to ultra-low levels of engine-out NOx emissions. A standard drive cycle, however, would require switches between HCCI and spark-ignited (SI) combustion modes. In this paper a methodology is introduced, investigating the fuel economy of such a multimode combustion concept in combination with a three-way catalytic converter (TWC). The TWC needs to exhibit unoccupied oxygen storage sites in order to show acceptable performance. But the lean exhaust gas during HCCI operation fills the oxygen storage and leads to a drop in NOx conversion efficiency. Eventually the levels of NOx become unacceptable and a mode switch to a fuel rich combustion mode is necessary in order to deplete the oxygen storage. The resulting lean-rich cycling leads to a penalty in fuel economy. In order to evaluate the impact of those penalties on fuel economy, a finite state model for combustion mode switches is combined with a longitudinal vehicle model and a phenomenological TWC model, focused on oxygen storage. The aftertreatment model is calibrated using combustion mode switch experiments from lean HCCI to rich spark-assisted HCCI and back. Fuel and emissions maps acquired in steady state experiments are used. Two depletion strategies are compared in terms of their influence on drive cycle fuel economy and NOx emissions.


2015 ◽  
Vol 17 (4) ◽  
pp. 436-450 ◽  
Author(s):  
Sandro Nüesch ◽  
Patrick Gorzelic ◽  
Li Jiang ◽  
Jeff Sterniak ◽  
Anna G Stefanopoulou

2019 ◽  
Vol 9 (21) ◽  
pp. 4610 ◽  
Author(s):  
Dario Di Maio ◽  
Carlo Beatrice ◽  
Valentina Fraioli ◽  
Pierpaolo Napolitano ◽  
Stefano Golini ◽  
...  

The main objective of the present research activity was to investigate the effect of very fast composition transitions of the engine exhaust typical in real-world driving operating conditions, as fuel cutoff phases or engine misfire, on the aftertreatment devices, which are generally very sensitive to these changes. This phenomenon is particularly evident when dealing with engines powered by natural gas, which requires the use of a three-way catalyst (TWC). Indeed, some deviations from the stoichiometric lambda value can interfere with the catalytic converter efficiency. In this work, a numerical “quasi-steady” model was developed to simulate the chemical and transport phenomena of a specific TWC for a compressed natural gas (CNG) heavy-duty engine. A dedicated experimental campaign was performed in order to evaluate the catalyst response to a defined λ variation pattern of the engine exhaust stream, thus providing the data necessary for the numerical model validation. Tests were carried out to reproduce oxygen storage phenomena that make catalyst behavior different from the classic steady-state operating conditions. A surface reaction kinetic mechanism concerning CH4, CO, H2, oxidation and NO reduction has been appropriately calibrated at different λ values with a step-by-step procedure, both in steady-state conditions of the engine work plan and during transient conditions, through cyclical and consecutive transitions of variable frequency between rich and lean phases. The activity also includes a proper calibration of the reactions involving cerium inside the catalyst in order to reproduce oxygen storage and release dynamics. Sensitivity analysis and continuous control of the reaction rate allowed evaluating the impact of each of them on the exhaust composition in several operating conditions. The proposed model predicts tailpipe conversion/formation of the main chemical species, starting from experimental engine-out data, and provides a useful tool to evaluate the catalyst’s performance.


Author(s):  
Kuo Yang ◽  
Pingen Chen

With increasingly demanding regulations on engine emission and fuel efficiency, the optimization of the internal combustion engine and the after-treatment integrated system has become a critical research focus. To address such an issue, this paper aims to achieve a better trade-off between the fuel consumption of a spark-ignited (SI) engine and emission conversion efficiencies of a Three-Way Catalytic converter (TWC) system. A Model Predictive Control (MPC)-based integrated engine and TWC control methodology is presented, which is able to optimize Air/Fuel Ratio (AFR) to maintain oxygen storage of TWC at a desired level and thus meet the tailpipe NOx, CO and HC emission requirements. The effectiveness of the presented control methodology is validated in simulation. Compared with the existing dithering-based AFR control, the proposed MPC-based AFR control can improve CO emission conversion efficiencies by 8.42% and 4.85% in simplified US06 and UDDS driving cycles, respectively. At the same time, Nitrogen Oxides (NOx) conversion efficiency maintains above the required limit of 95% and the fuel efficiency remains at the same level as the existing control methodology in production as well. Such an integrated engine-aftertreatment system control can be instrumental in improving engine efficiency and emission reduction performance.


Author(s):  
Wanhua Su ◽  
Xiaoyu Zhang ◽  
Tiejian Lin ◽  
Yiqiang Pei ◽  
Hua Zhao

A compound diesel HCCI combustion technology has been developed based on the combustion strategies of combination of controlled premixed charge compression ignition (CPCCI) through multi-injections and lean diffusion combustion (LDC) organized by a mixing enhanced combustion chamber. The purpose of this paper is to investigate the fuel spray evolution during multi-injections, heat release mode, thermo-efficiency and exhaust emissions from the compound combustion. In this work, the STAR-CD based, multidimensional modeling is employed to improve the understanding and assist the optimization of the multiple injection process. The parameters explored include the effects of injection timing, dwell time, and the pulse width. Insight generated from these studies provides guidelines on designing an injection profile for optimization of fuel-air mixing. By comparison of different heat release modes of conventional diesel combustion, the pure HCCI combustion and the compound HCCI combustion, the engine heat release can be summarized as forward concentrated mode (FC mode), post concentrated mode (PC mode) and dispersed mode (DS mode). The FC mode gives the highest thermo-efficiency but with highest NOx emissions. The PC mode gets lower NOx emissions but with the drawback of lower thermo-efficiency and higher soot emissions. The DS mode is a flexible heat release mode created by the compound HCCI combustion. A typical DS mode reveals two equivalent peaks of heat release. The first peak represents the CPCCI combustion and the later peak represents the lean diffusion combustion. The thermo-efficiency in a DS mode can reach approximately as high as that in FC mode, while NOx and soot emission can be reduced simultaneously and remarkably. The combustion efficiency and the heat loss in different combustion mode are also discussed.


Author(s):  
Sandro P. Nüesch ◽  
Anna G. Stefanopoulou

Ignoring the driver’s torque command can be beneficial for fuel economy, especially if it leads to extended residence time at efficient operating conditions. We answered this question for a particular engine, which allows mode switches between spark ignition (SI) and homogeneous charge compression ignition (HCCI) combustion. When operating such a multimode combustion engine it might be required to defer a load command outside the feasible regime of one combustion mode until a mode switch is accomplished. The resulting delays in engine torque response might negatively affect vehicle performance and drivability. In this paper a longitudinal vehicle model is presented, which incorporates dynamics associated with SI/HCCI mode switching. Two exemplary supervisory control strategies were evaluated in terms of fuel economy and torque behavior. It was seen that the duration of a mode switch may be short enough to avoid substantial impairment in torque response. This in turn would lead to the opportunity of purposefully ignoring the driver command. Thereby, the residence time in the beneficial HCCI combustion regime is prolonged and fuel-expensive mode switching avoided. The result is a trade-off between torque deviation and improvements in fuel economy. Finally, based on this trade-off the supervisory control strategy relying on a short-term prediction of engine load was seen to achieve similar fuel economy with slightly improved torque response than a strategy without prediction.


Energies ◽  
2019 ◽  
Vol 12 (6) ◽  
pp. 1036 ◽  
Author(s):  
Xinying Xu ◽  
Qi Chen ◽  
Mifeng Ren ◽  
Lan Cheng ◽  
Jun Xie

Increasing the combustion efficiency of power plant boilers and reducing pollutant emissions are important for energy conservation and environmental protection. The power plant boiler combustion process is a complex multi-input/multi-output system, with a high degree of nonlinearity and strong coupling characteristics. It is necessary to optimize the boiler combustion model by means of artificial intelligence methods. However, the traditional intelligent algorithms cannot deal effectively with the massive and high dimensional power station data. In this paper, a distributed combustion optimization method for boilers is proposed. The MapReduce programming framework is used to parallelize the proposed algorithm model and improve its ability to deal with big data. An improved distributed extreme learning machine is used to establish the combustion system model aiming at boiler combustion efficiency and NOx emission. The distributed particle swarm optimization algorithm based on MapReduce is used to optimize the input parameters of boiler combustion model, and weighted coefficient method is used to solve the multi-objective optimization problem (boiler combustion efficiency and NOx emissions). According to the experimental analysis, the results show that the method can optimize the boiler combustion efficiency and NOx emissions by combining different weight coefficients as needed.


2021 ◽  
pp. 146808742110169
Author(s):  
Zhongnan Ran ◽  
Jon Longtin ◽  
Dimitris Assanis

Solid oxide fuel cell – internal combustion engine (SOFC-ICE) hybrid systems are an attractive solution for electricity generation. The system can achieve up to 70% theoretical electric power conversion efficiency through energy cascading enabled by utilizing the anode off-gas from the SOFC as the fuel source for the ICE. Experimental investigations were conducted with a single cylinder Cooperative Fuel Research (CFR) engine by altering fuel-air equivalence ratio (ϕ), and compression ratio (CR) to study the engine load, combustion characteristics, and emissions levels of dry SOFC anode off-gas consisting of 33.9% H2, 15.6% CO, and 50.5% CO2. The combustion efficiency of the anode off-gas was directly evaluated by measuring the engine-out CO emissions. The highest net-indicated fuel conversion efficiency of 31.3% occurred at ϕ  = 0.90 and CR = 13:1. These results demonstrate that the anode off-gas can be successfully oxidized using a spark ignition combustion mode. The fuel conversion efficiency of the anode tail gas is expected to further increase in a more modern engine architecture that can achieve increased burn rates in comparison to the CFR engine. NOx emissions from the combustion of anode off-gas were minimal as the cylinder peak temperatures never exceeded 1800 K. This experimental study ultimately demonstrates the viability of an ICE to operate using an anode off-gas, thus creating a complementary role for an ICE to be paired with a SOFC in a hybrid power generation plant.


Energies ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 2102
Author(s):  
Josef Stetina ◽  
Michael Bohm ◽  
Michal Brezina

A micro cogeneration unit based on a three-cylinder internal combustion engine, Skoda MPI 1.0 L compressed natural gas (CNG), with an output of 25 kW at 3000 RPM is proposed in this paper. It is a relatively simple engine, which is already adopted by the manufacturer to operate on CNG. The engine life and design correspond to the original purpose of use in the vehicle. A detailed dynamic model was created in the GT-SUITE environment and implemented into an energy balance model that includes its internal combustion engine, heat exchangers, generator, battery storage, and water storage tank. The 1D internal combustion engine model provides us with information on engine start-up time, actual effective power, friction power, and the amount of heat going to the cooling system and exhaust pipe. The catalytic converter was removed from the exhaust pipe, and the engine was always operating at full load; thus, engine power control is not considered. An energy storage system for an island operation of the entire power unit for a large, detached house was designed to withstand accumulated energy for a few days in the case of a breakout. To reach a low initial system cost, the possible implementation of worn-out battery packs toward emission reduction in terms of the second life of the battery is proposed. The energy and emission balance are carried out, and the service life of the engine is also discussed.


2020 ◽  
Vol 9 (1) ◽  
pp. 1326-1349
Author(s):  
Siti Nurul Akmal Yusof ◽  
Nor Azwadi Che Sidik ◽  
Yutaka Asako ◽  
Wan Mohd. Arif Aziz Japar ◽  
Saiful Bahri Mohamed ◽  
...  

Abstract Nanofluid is a colloidal mixture consisting of nano-sized particles dispersed in a liquid medium. It improves heat transfer properties and promotes high energy efficiency in a wide spectrum of engineering applications. In recent years, particularly in the automotive industry, the addition of nanofluid in diesel/biodiesel as an additive for ICE has become an attractive approach to promote enhanced combustion efficiency and emission reduction due to their superior thermophysical properties. Many researchers have previously demonstrated that the addition of nanoparticles in diesel/biodiesel fuel improved the overall engine combustion characteristics. As a whole, this study aims to summarize the recent research findings related to the effect of nanoparticles on the fuel properties and engine combustion efficiency. Furthermore, different types of additive blended with varying fuel properties are also compared and discussed. Lastly, the advantages and prospects of using nanofluid as an additive fuel are summarized for future research opportunities.


Sign in / Sign up

Export Citation Format

Share Document