scholarly journals Improving Machined Surface Shape Prediction by Integrating Multi-Task Learning With Cutting Force Variation Modeling

Author(s):  
Chenhui Shao ◽  
Jie Ren ◽  
Hui Wang ◽  
Jionghua (Judy) Jin ◽  
S. Jack Hu

The shapes of machined surfaces play a critical role affecting powertrain performance, and therefore, it is necessary to characterize the shapes with high resolution. State-of-the-art approaches for surface shape characterization are mostly data-driven by interpolating and extrapolating the spatial data but its precision is limited by the density of measurements. This paper explores the new opportunity of improving surface shape prediction through considering the similarity of multiple similar manufacturing processes. It is a common scenario when the process of interest lacks sufficient data whereas rich data could be available from other similar-but-not-identical processes. It is reasonable to transfer the insights gained from other relevant processes into the surface shape prediction. This paper develops an engineering-guided multitask learning (EG-MTL) surface model by fusing surface cutting physics in engineering processes and the spatial data from a number of similar-but-not-identical processes. An iterative multitask Gaussian process learning algorithm is developed to learn the model parameters. Compared with the conventional multitask learning, the proposed method has the advantages in incorporating the insights on cutting force variation during machining and is potentially able to improve the prediction performance given limited measurement data. The methodology is demonstrated based on the data from real-world machining processes in an engine plant.

2021 ◽  
Author(s):  
Jingshui Huang ◽  
Pablo Merchan-Rivera ◽  
Gabriele Chiogna ◽  
Markus Disse ◽  
Michael Rode

<p>Water quality models offer to study dissolved oxygen (DO) dynamics and resulting DO balances. However, the infrequent temporal resolution of measurement data commonly limits the reliability of disentangling and quantifying instream DO process fluxes using models. These limitations of the temporal data resolution can result in the equifinality of model parameter sets. In this study, we aim to quantify the effect of the combination of emerging high-frequency monitoring techniques and water quality modelling for 1) improving the estimation of the model parameters and 2) reducing the forward uncertainty of the continuous quantification of instream DO balance pathways.</p><p>To this end, synthetic measurements for calibration with a given series of frequencies are used to estimate the model parameters of a conceptual water quality model of an agricultural river in Germany. The frequencies vary from the 15-min interval, daily, weekly, to monthly. A Bayesian inference approach using the DREAM algorithm is adopted to perform the uncertainty analysis of DO simulation. Furthermore, the propagated uncertainties in daily fluxes of different DO processes, including reaeration, phytoplankton metabolism, benthic algae metabolism, nitrification, and organic matter deoxygenation, are quantified.</p><p>We hypothesize that the uncertainty will be larger when the measurement frequency of calibrated data was limited. We also expect that the high-frequency measurements significantly reduce the uncertainty of flux estimations of different DO balance components. This study highlights the critical role of high-frequency data supporting model parameter estimation and its significant value in disentangling DO processes.</p>


Author(s):  
Jie Ren ◽  
Hui Wang

Controlling surface shape variations plays a key role in high-precision manufacturing. Most manufacturing plants rely on a number of multi-resolution measurements on manufactured surfaces to evaluate surface shapes and resultant quality. Conventional research on surface shape modeling focused on interpolation and extrapolation of spatial data using sampled measurements based on presumed spatial relationship over entire surface locations. However, the prediction accuracy is heavily restricted by the density of sampled measurements, preventing cost-effective evaluation of surface shape in high precision. New opportunities emerge for cost-effective high-precision surface manufacturing when the industry begins to extensively collect in-plant process information. This paper explores the opportunity by investigating strategies for fusing surface measurement data with multiple process variables. The fusion is achieved by characterizing the relationships between surface height and process variables using (1) linear regression based co-Kriging and (2) fuzzy if-then rules as well as considering spatial correlations. Under (3) Bayesian sequential updating frameworks, a generic surface variation model is updated sequentially using different process information. Case studies are conducted for comparisons and demonstrate the advantages of the fuzzy inference based spatial model.


2020 ◽  
pp. 052
Author(s):  
Jean-Christophe Calvet ◽  
Jean-Louis Champeaux

Cet article présente les différentes étapes des développements réalisés au CNRM des années 1990 à nos jours pour spatialiser à diverses échelles les simulations du modèle Isba des surfaces terrestres. Une attention particulière est portée sur l'intégration, dans le modèle, de données satellitaires permettant de caractériser la végétation. Deux façons complémentaires d'introduire de l'information géographique dans Isba sont présentées : cartographie de paramètres statiques et intégration au fil de l'eau dans le modèle de variables observables depuis l'espace. This paper presents successive steps in developments made at CNRM from the 1990s to the present-day in order to spatialize the simulations of the Isba land surface model at various scales. The focus is on the integration in the model of satellite data informative about vegetation. Two complementary ways to integrate geographic information in Isba are presented: mapping of static model parameters and sequential assimilation of variables observable from space.


Energies ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1265 ◽  
Author(s):  
Johanna Geis-Schroer ◽  
Sebastian Hubschneider ◽  
Lukas Held ◽  
Frederik Gielnik ◽  
Michael Armbruster ◽  
...  

In this contribution, measurement data of phase, neutral, and ground currents from real low voltage (LV) feeders in Germany is presented and analyzed. The data obtained is used to review and evaluate common modeling approaches for LV systems. An alternative modeling approach for detailed cable and ground modeling, which allows for the consideration of typical German LV earthing conditions and asymmetrical cable design, is proposed. Further, analytical calculation methods for model parameters are described and compared to laboratory measurement results of real LV cables. The models are then evaluated in terms of parameter sensitivity and parameter relevance, focusing on the influence of conventionally performed simplifications, such as neglecting house junction cables, shunt admittances, or temperature dependencies. By comparing measurement data from a real LV feeder to simulation results, the proposed modeling approach is validated.


2013 ◽  
Vol 726-731 ◽  
pp. 3792-3798
Author(s):  
Wen Ju Zhao ◽  
Wei Sun ◽  
Zong Li Li ◽  
Yan Wei Fan ◽  
Jian Shu Song ◽  
...  

SWAT (Soil and Water Assessment Tool) model is one of distributed hydrological model, based on spatial data offered by GIS and RS. This article mainly introduces the SWAT model principle, structure, and it is the application of stream flow simulation in China and other countries, then points out the deficiency existing in the process of model research. In order to service in water resources management work better, experts and scholars further research the rate constant and uncertainty of the simplification of the model parameters, and the combination of RS and GIS to use, and hydrological scale problems.


Author(s):  
Geir Evensen

AbstractIt is common to formulate the history-matching problem using Bayes’ theorem. From Bayes’, the conditional probability density function (pdf) of the uncertain model parameters is proportional to the prior pdf of the model parameters, multiplied by the likelihood of the measurements. The static model parameters are random variables characterizing the reservoir model while the observations include, e.g., historical rates of oil, gas, and water produced from the wells. The reservoir prediction model is assumed perfect, and there are no errors besides those in the static parameters. However, this formulation is flawed. The historical rate data only approximately represent the real production of the reservoir and contain errors. History-matching methods usually take these errors into account in the conditioning but neglect them when forcing the simulation model by the observed rates during the historical integration. Thus, the model prediction depends on some of the same data used in the conditioning. The paper presents a formulation of Bayes’ theorem that considers the data dependency of the simulation model. In the new formulation, one must update both the poorly known model parameters and the rate-data errors. The result is an improved posterior ensemble of prediction models that better cover the observations with more substantial and realistic uncertainty. The implementation accounts correctly for correlated measurement errors and demonstrates the critical role of these correlations in reducing the update’s magnitude. The paper also shows the consistency of the subspace inversion scheme by Evensen (Ocean Dyn. 54, 539–560 2004) in the case with correlated measurement errors and demonstrates its accuracy when using a “larger” ensemble of perturbations to represent the measurement error covariance matrix.


2017 ◽  
Vol 18 (7) ◽  
pp. 2029-2042
Author(s):  
Tony E. Wong ◽  
William Kleiber ◽  
David C. Noone

Abstract Land surface models are notorious for containing many parameters that control the exchange of heat and moisture between land and atmosphere. Properly modeling the partitioning of total evapotranspiration (ET) between transpiration and evaporation is critical for accurate hydrological modeling, but depends heavily on the treatment of turbulence within and above canopies. Previous work has constrained estimates of evapotranspiration and its partitioning using statistical approaches that calibrate land surface model parameters by assimilating in situ measurements. These studies, however, are silent on the impacts of the accounting of uncertainty within the statistical calibration framework. The present study calibrates the aerodynamic, leaf boundary layer, and stomatal resistance parameters, which partially control canopy turbulent exchange and thus the evapotranspiration flux partitioning. Using an adaptive Metropolis–Hastings algorithm to construct a Markov chain of draws from the joint posterior distribution of these resistance parameters, an ensemble of model realizations is generated, in which latent and sensible heat fluxes and top soil layer temperature are optimized. A set of five calibration experiments demonstrate that model performance is sensitive to the accounting of various sources of uncertainty in the field observations and model output and that it is critical to account for model structural uncertainty. After calibration, the modeled fluxes and top soil layer temperature are largely free from bias, and this calibration approach successfully informs and characterizes uncertainty in these parameters, which is essential for model improvement and development. The key points of this paper are 1) a Markov chain Monte Carlo calibration approach successfully improves modeled turbulent fluxes; 2) ET partitioning estimates hinge on the representation of uncertainties in the model and data; and 3) despite these inherent uncertainties, constrained posterior estimates of ET partitioning emerge.


Author(s):  
Xiangxue Zhao ◽  
Shapour Azarm ◽  
Balakumar Balachandran

Online prediction of dynamical system behavior based on a combination of simulation data and sensor measurement data has numerous applications. Examples include predicting safe flight configurations, forecasting storms and wildfire spread, estimating railway track and pipeline health conditions. In such applications, high-fidelity simulations may be used to accurately predict a system’s dynamical behavior offline (“non-real time”). However, due to the computational expense, these simulations have limited usage for online (“real-time”) prediction of a system’s behavior. To remedy this, one possible approach is to allocate a significant portion of the computational effort to obtain data through offline simulations. The obtained offline data can then be combined with online sensor measurements for online estimation of the system’s behavior with comparable accuracy as the off-line, high-fidelity simulation. The main contribution of this paper is in the construction of a fast data-driven spatiotemporal prediction framework that can be used to estimate general parametric dynamical system behavior. This is achieved through three steps. First, high-order singular value decomposition is applied to map high-dimensional offline simulation datasets into a subspace. Second, Gaussian processes are constructed to approximate model parameters in the subspace. Finally, reduced-order particle filtering is used to assimilate sparsely located sensor data to further improve the prediction. The effectiveness of the proposed approach is demonstrated through a case study. In this case study, aeroelastic response data obtained for an aircraft through simulations is integrated with measurement data obtained from a few sparsely located sensors. Through this case study, the authors show that along with dynamic enhancement of the state estimates, one can also realize a reduction in uncertainty of the estimates.


2010 ◽  
Vol 1 ◽  
pp. 163-171 ◽  
Author(s):  
W Merlijn van Spengen ◽  
Viviane Turq ◽  
Joost W M Frenken

We have replaced the periodic Prandtl–Tomlinson model with an atomic-scale friction model with a random roughness term describing the surface roughness of micro-electromechanical systems (MEMS) devices with sliding surfaces. This new model is shown to exhibit the same features as previously reported experimental MEMS friction loop data. The correlation function of the surface roughness is shown to play a critical role in the modelling. It is experimentally obtained by probing the sidewall surfaces of a MEMS device flipped upright in on-chip hinges with an AFM (atomic force microscope). The addition of a modulation term to the model allows us to also simulate the effect of vibration-induced friction reduction (normal-force modulation), as a function of both vibration amplitude and frequency. The results obtained agree very well with measurement data reported previously.


Sign in / Sign up

Export Citation Format

Share Document