scholarly journals Modeling of the Onset, Propagation, and Interaction of Multiple Cracks Generated From Corrosion Pits by Using Peridynamics

Author(s):  
Dennj De Meo ◽  
Luigi Russo ◽  
Erkan Oterkus

High stress regions around corrosion pits can lead to crack nucleation and propagation. In fact, in many engineering applications, corrosion pits act as precursor to cracking, but prediction of structural damage has been hindered by lack of understanding of the process by which a crack develops from a pit and limitations in visualization and measurement techniques. An experimental approach able to accurately quantify the stress and strain field around corrosion pits is still lacking. In this regard, numerical modeling can be helpful. Several numerical models, usually based on finite element method (FEM), are available for predicting the evolution of long cracks. However, the methodology for dealing with the nucleation of damage is less well developed, and, often, numerical instabilities arise during the simulation of crack propagation. Moreover, the popular assumption that the crack has the same depth as the pit at the point of transition and by implication initiates at the pit base has no intrinsic foundation. A numerical approach is required to model nucleation and propagation of cracks without being affected by any numerical instability and without assuming crack initiation from the base of the pit. This is achieved in the present study, where peridynamics (PD) theory is used in order to overcome the major shortcomings of the currently available numerical approaches. Pit-to-crack transition phenomenon is modeled, and nonconventional and more effective numerical frameworks that can be helpful in failure analysis and in the design of new fracture-resistant and corrosion-resistant materials are presented.

2010 ◽  
Vol 02 (03) ◽  
pp. 681-697 ◽  
Author(s):  
F. S. CUI ◽  
H. P. LEE ◽  
C. LU ◽  
P. CHAI

Vascular stents are used to dilate arteries that are narrowed or clogged by plaque. However, in-stent restenosis is still one of the major causes of the clinical failure. It is believed that vessel trauma imposed during stent deployment is closely correlated to restenosis. Clinical observations show that the longitudinal and axial geographic miss in pre/post-dilation are responsible for the vessel trauma. The interactions between the stent-strut and the artery are difficult to measure in vivo or clinically and reported results are very limited. A numerical approach that leverages on computing power can provide new insights into the stent implantation process. In this study, the effects of balloon length and compliance that play important roles during stent expansion were investigated. Areas in the vessels with high stress concentrations were identified as these were weaknesses that might have a high possibility of vascular injury. Two different types of numerical models were constructed: a simplified model that considered only the balloon and stent and a more comprehensive model that consisted of the balloon, stent, plaque, and artery. Virtual stent implantation trials were simulated and the phenomena of stent recoil, dogboning and foreshortening were observed and examined. It was found that balloons which were slightly longer than the stent and less compliance would be more likely to eliminate dogboning. Furthermore, a new parameter, namely the Ectropion angle, was introduced to describe the turning effect of the stent end in situations when dogboning could not adequately characterize this phenomenon. The present study could provide guidance for the placement of stents by clinical practitioners.


2021 ◽  
Vol 13 (1) ◽  
pp. 91-100
Author(s):  
Philip Poillot ◽  
Christine L. Le Maitre ◽  
Jacques M. Huyghe

AbstractThe strain-generated potential (SGP) is a well-established mechanism in cartilaginous tissues whereby mechanical forces generate electrical potentials. In articular cartilage (AC) and the intervertebral disc (IVD), studies on the SGP have focused on fluid- and ionic-driven effects, namely Donnan, diffusion and streaming potentials. However, recent evidence has indicated a direct coupling between strain and electrical potential. Piezoelectricity is one such mechanism whereby deformation of most biological structures, like collagen, can directly generate an electrical potential. In this review, the SGP in AC and the IVD will be revisited in light of piezoelectricity and mechanotransduction. While the evidence base for physiologically significant piezoelectric responses in tissue is lacking, difficulties in quantifying the physiological response and imperfect measurement techniques may have underestimated the property. Hindering our understanding of the SGP further, numerical models to-date have negated ferroelectric effects in the SGP and have utilised classic Donnan theory that, as evidence argues, may be oversimplified. Moreover, changes in the SGP with degeneration due to an altered extracellular matrix (ECM) indicate that the significance of ionic-driven mechanisms may diminish relative to the piezoelectric response. The SGP, and these mechanisms behind it, are finally discussed in relation to the cell response.


Author(s):  
Vito Basile ◽  
Francesco Modica ◽  
Irene Fassi

In the present paper, a numerical approach to model the layer-by-layer construction of cured material during the Additive Manufacturing (AM) process is proposed. The method is developed by a recursive mechanical finite element (FE) analysis and takes into account forces and pressures acting on the cured material during the process, in order to simulate the behavior and investigate the failure condition sources, which lead to defects in the final part geometry. The study is focused on the evaluation of the process capability Stereolithography (SLA), to build parts with challenging features in meso-micro scale without supports. Two test cases, a cantilever part and a bridge shape component, have been considered in order to evaluate the potentiality of the approach. Numerical models have been tuned by experimental test. The simulations are validated considering two test cases and briefly compared to the printed samples. Results show the potential of the approach adopted but also the difficulties on simulation settings.


Author(s):  
Stefan Schmid ◽  
Rudi Kulenovic ◽  
Eckart Laurien

For the validation of empirical models to calculate leakage flow rates in through-wall cracks of piping, reliable experimental data are essential. In this context, the Leakage Flow (LF) test rig was built up at the IKE for measurements of leakage flow rates with reduced pressure (maximum 1 MPA) and temperature (maximum 170 °C) compared to real plant conditions. The design of the test rig enables experimental investigations of through-wall cracks with different geometries and orientations by means of circular blank sheets with integrated cracks which are installed in the tubular test section of the test rig. In the paper, the experimental LF set-up and used measurement techniques are explained in detail. Furthermore, first leakage flow measurement results for one through-wall crack geometry and different imposed fluid pressures at ambient temperature conditions are presented and discussed. As an additional aspect the experimental data are used for the determination of the flow resistance of the investigated leak channel. Finally, the experimental results are compared with numerical results of WinLeck calculations to prove specifically in WinLeck implemented numerical models.


2021 ◽  
Vol 879 ◽  
pp. 189-201
Author(s):  
M.A. Amir ◽  
N.H. Hamid

Recently, there are a lot of technological developments in the earthquake engineering field to reduce structural damage and one of them is a base isolation system. The base isolation system is one of the best technologies for the safety of human beings and properties under earthquake excitations. The aim of this paper is to review previous research works on simulation of base isolation systems for RC buildings and their efficiency in the safety of these buildings. Base isolation decouples superstructure from substructure to avoid transmission of seismic energy to the superstructure of RC buildings. The most effective way to assess the base isolation system for RC building under different earthquake excitations is by conducting experiment work that consumes more time and money. Many researchers had studied the behavior of base isolation system for structure through modeling the behavior of the base isolation in which base isolator is modeled through numerical models and validated through experimental works. Previous researches on the modeling of base isolation systems of structures had shown similar outcomes as the experimental work. These studies indicate that base isolation is an effective technology in immunization of structures against earthquakes.


2015 ◽  
Vol 2015 ◽  
pp. 1-7 ◽  
Author(s):  
Jian Hou ◽  
Li Song

Pitting corrosion has been observed in steel bars of existing reinforced concrete (RC) structures in different erosion environments and has been identified as a potential origin for fatigue crack nucleation. In the present study, under uniaxial tension loading, stress distribution in the steel bars with one or two semiellipsoidal corrosion pits has systematically been investigated by conducting a series of three-dimensional semiellipsoidal pitted models. Based on the finite element analyses, it is shown that stress concentration factor (SCF) increases linearly with increasing pit aspect ratio (a/b) and increases nonlinearly with increasing pit relative depth (a/R) for single corrosion pit problem. For double corrosion pits problem, the SCF decreases nonlinearly with increasing angle of two transverse pits (θ). The interaction of two longitudinal pits can be ignored in the calculation of SCF even if the distance of two pits (d) is very small.


Author(s):  
Alessio Pierdicca ◽  
Francesco Clementi ◽  
Diletta Maracci ◽  
Daniela Isidori ◽  
Stefano Lenci

One of the most important issues in civil and in mechanical engineering is the detection of structural damages, which are defined as changes of material properties, of boundary conditions and of system connectivity, which adversely affect the system’s performances. The damage identification process generally requires establishing existence, localization, type and intensity of the damage. During its service life, a structure, besides his natural aging, can be subjected to earthquakes. These events may have a deep impact on building safety and a continuous monitoring of the structure health conditions, through Structural Health Monitoring (SHM) techniques, is necessary in many cases. Within this a background, the purpose of this work is to propose an integrated novel approach for the diagnosis of structures after a seismic event. The proposed monitoring system is based on recording the accelerations of the real structure during a seismic input, and the reintroduction of them into a numerical model, suitably tuned, in order to outline a possible post-earthquake scenario. This approach provides an estimation of the health of the building and of its residual life, and to detect and quantify the damage, some of the crucial aspects of SHM. Actually, we also get both online and self-diagnosis of the structural health. The technique is applied to a real structure, an industrial building liable of some seismic vulnerabilities. It it did not undergo an earthquake, so we have not recordered accelerations, and get them from a different numerical models subjected to the ground acceleration of a realistic earthquake.


2013 ◽  
Vol 40 (8) ◽  
pp. 803-814 ◽  
Author(s):  
Benoit Boulanger ◽  
Patrick Paultre ◽  
Charles-Philippe Lamarche

After the 2010 Haiti earthquake, which destroyed a significant part of the seismically vulnerable city of Port-au-Prince, the country’s capital, a 12-storey reinforced concrete building that behaved well was investigated to understand its dynamic response. This paper completes the experimental work presented in a companion paper, in which the dynamic properties of the building were obtained from ambient vibration tests, and from which a finite-element model was updated. This paper’s main objectives are: (i) to understand the causes that led to the observed structural damage; and (ii) to estimate the likely seismic excitation at the site of the building. Several nonlinear analyses involving various ground motion intensities were conducted and the results were compared with the damage reported during the on-site survey. The numerical models reproduced the observed damages well and helped to explain them. The overall response of the mixed stiff frame–wall structure was clearly dominated by the high stiffness of the shear walls, showing that this type of structural system helps in keeping reasonable interstorey drift levels. Overall, the building’s structure seems to have responded linearly to all the ground motions investigated, but deformation demands imposed to the frame by the shear walls lead to local damages.


2020 ◽  
Vol 20 (13) ◽  
pp. 2041008
Author(s):  
Pinelopi Kyvelou ◽  
David A. Nethercot ◽  
Nicolas Hadjipantelis ◽  
Constantinos Kyprianou ◽  
Leroy Gardner

The importance of allowing for the many different types of structural interaction that have an effect on the performance of light gauge members when used in practical situations is emphasized. A distinction is drawn between internal interactions involving the various plate elements of the steel profiles and external interactions involving the other components in the system. Although full-scale testing of representative systems can capture this behavior, the costs involved make this an impractical general basis for design; codified methods generally consider only isolated plates within members and isolated members within systems, thereby neglecting the potentially beneficial effects of both forms of interaction. Properly used, modern methods of numerical analysis offer the potential to systematically allow for both forms of interaction — provided the numerical models used have been adequately validated against suitable tests. The use of such an approach is explained and illustrated for three commonly used structural systems: roof purlins, floor beams, and columns in stud walls. In each case, it is shown that, provided sufficient care is taken, the numerical approach can yield accurate predictions of the observed test behavior. The subsequently generated large portfolio of numerical results can then provide clear insights into the exact nature of the various interactions and, thus, form the basis for more realistic design approaches that are both more accurate in their predictions and which lead to more economic designs. Building on this, modifying existing arrangements so as to yield superior performance through specific modifications is now possible. Two such examples, one in which improved interconnection between the components in a system is investigated and a second in which prestressing is shown to provide substantial enhancement for relatively small and simple changes, are presented.


2020 ◽  
Vol 2020 ◽  
pp. 1-14
Author(s):  
Luis S. Vaca Oyola ◽  
Mónica R. Jaime Fonseca ◽  
Ramsés Rodríguez Rocha

This study presents the damaged flexibility matrix method (DFM) to identify and determine the magnitude of damage in structural elements of plane frame buildings. Damage is expressed as the increment in flexibility along the damaged structural element. This method uses a new approach to assemble the flexibility matrix of the structure through an iterative process, and it adjusts the eigenvalues of the damaged flexibility matrices of each system element. The DFM was calibrated using numerical models of plane frames of buildings studied by other authors. The advantage of the DFM, with respect to other flexibility-based methods, is that DFM minimizes the adverse effect of modal truncation. The DFM demonstrated excellent accuracy with complete modal information, even when it was applied to a more realistic scenario, considering frequencies and modal shapes measured from the recorded accelerations of buildings stories. The DFM also presents a new approach to simulate the effects of noise by perturbing matrices of flexibilities. This approach can be useful for research on realistic damage detection. The combined effects of incomplete modal information and noise were studied in a ten-story four-bay building model taken from the literature. The ability of the DFM to assess structural damage was corroborated. Application of the proposed method to a ten-story four-bay building model demonstrates its efficiency to identify the flexibility increment in damaged structural elements.


Sign in / Sign up

Export Citation Format

Share Document