Significance of Activation Energy and Effective Prandtl Number in Accelerated Flow of Jeffrey Nanoparticles With Gyrotactic Microorganisms

2020 ◽  
Vol 142 (11) ◽  
Author(s):  
Sami Ullah Khan ◽  
Iskander Tlili

Abstract This research addresses the interesting rheological features of Jeffrey nanofluid containing gyrotactic microorganism over an accelerated configuration. The additional consequences of activation energy and thermal radiation are also encountered in the current flow problem. The characteristics of nanofluid is utilized by using Buongiorno’s nanofluid model, while the phenomenon of bioconvection is evaluated by Kuznestov and Nield model. Unlike traditional attempts, the analysis for thermal radiation is performed by using “one parametric approach” by expressing the Prandtl number and thermal radiation parameter in combined form, namely, effective Prandtl number. The governing equations reflecting the flow problem are analytically treated with the help of homotopic algorithm. The impact of flow parameters is graphically elaborated with relevant physical significance. Further, the numerical expressions for effective local Nusselt number, local Sherwood number, and motile density number with variation of flow parameters in articulated tabular form. It is observed that magnitude of skin friction coefficient oscillates periodically with time and magnitude of oscillation increases with increment of Deborah number and mixed convection constant. It is further emphasized that the temperature distribution is enhanced with buoyancy ratio constant and bioconvection Rayleigh number. The microorganism distribution increases with buoyancy ratio constant but reverse trend has been examined for Peclet number. The observations from the reported problem can be more effective for the development of bifurcation processes, biofuels, enzymes, etc.

2021 ◽  
Vol 13 (5) ◽  
pp. 168781402110136
Author(s):  
Mumtaz Khan ◽  
Amer Rasheed ◽  
Shafqat Ali ◽  
Qurat-ul-Ain Azim

The main objective of this paper is to offer a comprehensive study regarding solar radiation and MHD effects on 3D boundary layer Jeffery fluid flow over a non-uniform stretched sheet along with variable thickness, porous medium and chemical reaction of first order are assumed. The system of equations representing temperature, velocity and concentration fields are converted into dimensionless form by introducing dimensionless variables. Thereafter, the aforesaid equations are solved with the help of BVP4C in MATLAB. The numerical results obtained through this scheme are more accurate when compared with those in the existing literature. In order to have a pictorial representation, the effects of material and flow parameters on velocity, temperature and concentration profiles are presented through graphs. Moreover, the numerical values of heat and mass transfer rate and skin friction coefficient are given in tabular form. It is evident from the acquired results, that the velocity offers two fold behavior for variable thickness parameter that is, n < 1 close and away from the non-uniform surface. It is also noted that the axial and transverse velocities show an increasing behavior for Deborah number while the fluid temperature and concentration shows opposite behavior at the same time.


Author(s):  
Usman ◽  
M. Ijaz Khan ◽  
Sami Ullah Khan ◽  
Abuzar Ghaffari ◽  
Yu-Ming Chu ◽  
...  

This communication aims to develop the thermal flow model for generalized micropolar nanofluid with insensitive applications of bioconvection, activation energy and nonlinear thermal radiation. The generalized micropolar fluid model is the extension of traditional micropolar fluid model with viscoelastic relations. The viscous nature of non-Newtonian micropolar material can be successfully predicted with help of this model. The motivating idea for considering the motile microorganisms is to control the nanoparticles suspension effectively. The higher order slip relations are incorporated to examine the bio-convective phenomenon. The simplified coupled equations in terms of non-dimensional variables are numerically treated with shooting scheme. The reliable graphical outcomes are presented for flow parameters governed to the transported problem. The flow pattern of each parameter is highlighted in view of viscous nature of micropolar fluid.


2021 ◽  
Vol 10 (4) ◽  
pp. 478-490
Author(s):  
M. Venkateswarlu ◽  
P. Bhaskar

The work of steady hydromagnetic stream of Casson liquid in a micro-channel constructed by two indefinite vertical proportionate walls in the appearance of thermal radiation is presented in this article. The effect of an imposed magnetic domain appearing scheduled to movement of an electrically administrating liquid is adopted into account. The exact solutions of the liquid velocity, imposed magnetic domain, and temperature domain have been obtained. Also, the analytical expressions for the skin-friction coefficient and imposed current density are obtained. The basic aspiration of this article is to reinvestigate the supremacy of pertinent physical constraints like magnetic Prandtl number, injection/suction parameter, Hartmann number, thermal radiation parameter, rarefaction parameter, wall ambient temperature difference ratio, and liquid wall interaction parameter over the imposed magnetic field and velocity of the liquid. Lorentz force which is obtained from magnetic field has a propensity to decline the motion of liquid and imposed magnetic field. The imposed current density rises with an enhancement in the hydromagnetic Prandtl number. This study is applied in the machines like transformers, generators, and motors work on the principle of electromagnetic induction. Results are compared with the literature in the limiting case.


2021 ◽  
Vol 10 (1) ◽  
pp. 67-74
Author(s):  
Hunegnaw Dessie

The purpose of this research is to see how chemical processes, activation energy, and heat radiation affect MHD flow of Maxwell fluid in a rotating frame. Using applicable similarity transformations, the partial differential equations that regulate the flow are reduced to extremely nonlinear ordinary differential equations. Graphs and tables are used to study the impact of monitoring parameters on velocity, temperature, concentration profiles, reduced Nusselt number, reduced Sherwood numbers, and skin friction coefficients. Outstanding agreement is obtained when the present findings of the study is compared with the previous related research works. In the study, it is noted that an increase of the thermal radiation parameters contributes to an increase of the flow temperature region. When a fluid is subjected to a greater rotation parameter, the thermal boundary layer thickens and the heat transfer rate decrease. Moreover, a decline of mass transfer rate is observed for a rise of Prandl number, rotational parameter or Deborah number.


2020 ◽  
pp. 186-186 ◽  
Author(s):  
Zulqurnain Sabir ◽  
Ali Imran ◽  
Muhammad Umar ◽  
Muhammad Zeb ◽  
Muhammad Shoaib ◽  
...  

The present study investigates the impacts of thermal radiation and inclined magnetic field on the Sutterby fluid by capitalizing Cattaneo-Christov heat flux system. The suitable transformations from partial differential equations (PDEs) into ordinary differential equations (ODEs) are achieved by capitalizing the strength of similarity conversion system. Well known numerical shooting technique is used along with integrated strength Runge Kutta method of fourth order. The proposed results are compared with Lobatto 111A method which strengthen the convergence and accuracy of present fluidic system. The skin friction coefficients and Nusselt number are numerically exhibited in tabular form, while the parameter of interests in terms of velocity ratio parameter, power law index, the thermal radiation parameter, Prandtl number, Deborah number, magnetic parameter. Here in this contemporary investigation, the phenomenon of thermal radiation on an inclined magnetic field using Sutterby capitalizing Cattaneo-Christov heat flux model has been discussed. The resulting complex nonlinear ODEs are tackled numerically by utilizing a famous shooting technique with the integrated strength of the Runge-Kutta method of fourth order. The obtained numerical results are compared with the MATLbuilt-in solver bvp4c. The numerical values of the skin friction coefficient and reduced Nusselt number are narrated in tabular form, while some proficient parameters like velocity ratio parameter, power-law index, Deborah number, magnetic parameter, inclined magnetic angle, the thermal radiation parameter, Reynolds number and Prandtl number on the velocity and temperature profiles have been discussed numerically as well as graphically. Outcomes of the proposed research show that by increasing the inclined angle, enhancement is seen in the skin-friction coefficient and reduces the Nusselt number. Moreover, by increasing the Reynolds number, the temperature profile declines initially and then moves upward in the channel. The stability and convergence of the proposed methodolgy in validated through residual errors based different tolerances.


Coatings ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 1048
Author(s):  
Syed Muhammad Ali Haider ◽  
Bagh Ali ◽  
Qiuwang Wang ◽  
Cunlu Zhao

In this paper, a mathematical model is established to examine the impacts of Stefan blowing on the unsteady magnetohydrodynamic (MHD) flow of an electrically conducting nanofluid over a stretching sheet in the existence of thermal radiation, Arrhenius activation energy and chemical reaction. It is proposed to use the Buongiorno nanofluid model to synchronize the effects of magnetic and electric fields on the velocity and temperature fields to enhance the thermal conductivity. We utilized suitable transformation to simplify the governing partial differential equation (PDEs) into a set of nonlinear ordinary differential equations (ODEs). The obtained equations were solved numerically with the help of the Runge–Kutta 4th order using the shooting technique in a MATLAB environment. The impact of the developing flow parameters on the flow characteristics is analyzed appropriately through graphs and tables. The velocity, temperature, and nanoparticle concentration profiles decrease for various values of involved parameters, such as hydrodynamic slip, thermal slip and solutal slip. The nanoparticle concentration profile declines in the manifestation of the chemical reaction rate, whereas a reverse demeanor is noted for the activation energy. The validation was conducted using earlier works published in the literature, and the results were found to be incredibly consistent.


2020 ◽  
Vol 2020 ◽  
pp. 1-14
Author(s):  
M. Irfan ◽  
M. Asif Farooq ◽  
A. Mushtaq ◽  
Z. H. Shamsi

This research aims at providing the theoretical effects of the unsteady MHD stagnation point flow of heat and mass transfer across a stretching and shrinking surface in a porous medium including internal heat generation/absorption, thermal radiation, and chemical reaction. The fundamental principles of the similarity transformations are applied to the governing partial differential equations (PDEs) that lead to ordinary differential equations (ODEs). The transformed ODEs are numerically solved by the shooting algorithm implemented in MATLAB, and verification is done from MATLAB built-in solver bvp4c. The numerical data produced for the skin friction coefficient, the local Nusselt number, and the local Sherwood number are compared with the available result and found to be in a close agreement. The impact of involved physical parameters on velocity, temperature, concentration, and density of motile microorganisms profiles is scrutinized through graphs. It is analyzed that the skin friction coefficient enhances with increasing values of an unsteady parameter A , magnetic parameter M , and porosity parameter Kp . In addition, we observe that the density of a motile microorganisms profile enhances larger values of the bioconvection Lewis number Lb and Peclet number Pe and decreases with the increasing values of an unsteady parameter A .


Symmetry ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 1019
Author(s):  
Zahra Abdelmalek ◽  
Kamel Al-Khaled ◽  
Hassan Waqas ◽  
A. Aldabesh ◽  
Sami Ullah Khan ◽  
...  

Ferro liquids derive their magneto–viscous behavior from the suspended magnetic nanomaterial that enables tunable changes in temperature, as well as nano-structured fluid characteristics. A theoretical model that depicts the bioconvection flow of cross nanofluid with a magnetic dipole subjected to a cylindrical surface was developed and numerically solved. The model encountered nonlinear thermal radiation, activation energy, and second order slip. The flow equations were reduced and are presented in dimensionless forms, and they were solved numerically using the shooting technique, which is a built-in feature of MatLab. The model encountered symmetrical constraints for predicting velocity, temperature, concentration, and gyrotactic microorganism distribution and profiles. Moreover, the numerical values were computed for local Nusselt number, local Sherwood number, and motile density number against each physical parameter.


2016 ◽  
Vol 3 (4) ◽  
pp. 349-362 ◽  
Author(s):  
R. Srinivasa Raju ◽  
G. Jithender Reddy ◽  
J. Anand Rao ◽  
M.M. Rashidi

Abstract The numerical solutions of unsteady hydromagnetic natural convection Couette flow of a viscous, incompressible and electrically conducting fluid between the two vertical parallel plates in the presence of thermal radiation, thermal diffusion and diffusion thermo are obtained here. The fundamental dimensionless governing coupled linear partial differential equations for impulsive movement and uniformly accelerated movement of the plate were solved by an efficient Finite Element Method. Computations were performed for a wide range of the governing flow parameters, viz., Thermal diffusion (Soret) and Diffusion thermo (Dufour) parameters, Magnetic field parameter, Prandtl number, Thermal radiation and Schmidt number. The effects of these flow parameters on the velocity (u), temperature (θ) and Concentration (ϕ) are shown graphically. Also the effects of these pertinent parameters on the skin-friction, the rate of heat and mass transfer are obtained and discussed numerically through tabular forms. These are in good agreement with earlier reported studies. Analysis indicates that the fluid velocity is an increasing function of Grashof numbers for heat and mass transfer, Soret and Dufour numbers whereas the Magnetic parameter, Thermal radiation parameter, Prandtl number and Schmidt number lead to reduction of the velocity profiles. Also, it is noticed that the rate of heat transfer coefficient and temperature profiles increase with decrease in the thermal radiation parameter and Prandtl number, whereas the reverse effect is observed with increase of Dufour number. Further, the concentration profiles increase with increase in the Soret number whereas reverse effect is seen by increasing the values of the Schmidt number. Highlights Studied MHD free convection Couette flow with the effect of Soret & Dufour numbers. Finite Element Method is implemented as the numerical approach. Grid independence of FEM is studied. Enhance the fluid velocity as increasing of temperature and concentration gradient.


2020 ◽  
Vol 34 (28) ◽  
pp. 2050265
Author(s):  
Rukiya Maqbool ◽  
M. Ijaz Khan ◽  
Sumaira Qayyum ◽  
T. Hayat

Ferroliquids are made out of exceptionally tiny nanoscale particles (usually diameter 10 nanometers or less) of hematite, magnetite or some other compound comprising iron and a liquid. This is small enough for thermal agitation to scatter them equally inside a transporter liquid, and for them to contribute to general magnetic response of the liquid. The composition of the typical ferroliquid is about 5% magnetic solids, 10% surfactant and 85% carrier by volume. There are frequent applications of ferrofluids in mechanical and industrial engineering. Ferrofluids have innovative characteristics and their impact in magnetic fields prompts many fascinating applications. Albeit magnetic liquids are already utilized in certain devices they have not yet been abused to any level. It is trusted that this research communication may investigate the analyst to think of considering new uses for this entrancing material. Therefore, modeling is developed for the ferrofluid stagnation flow over a stretched surface with Ohmic heating and dissipation. The Tiwari–Das model is used for mathematical modeling of nanofluid. The nonlinear system of differential equations is first converted into first order and then tackled through the built-in-Shooting method. The impact of the different pertinent flow parameters is discussed on the velocity, temperature, Nusselt number and skin friction coefficient through the various plots and tables.


Sign in / Sign up

Export Citation Format

Share Document