Heavy Fuel Operation at Limay Bataan Power Station

Author(s):  
Benno Basler ◽  
Detlef Marx

The Limay Bataan Power station, a 600 MW combined cycle, is now in its 8th successful year of operation. Operating on this specific heavy fuel oil, which is a high viscosity, high ashbearing heavy fuel residue from the refinery at Limay, requires a skilled and experienced crew as the quality of fuel was subject to major changes which are highly relevant to the operating mode. If not treated properly, this fuel could corrode blades within a short operating period. This paper describes the experiences gained on the fuel handling from the fuel treatment plant to the turbine and also addresses the operation of the combined cycle. Specific operating problems are discussed. The plant is fully operated and maintained by ALSTOM Power O&M Ltd with its local team that has greatly contributed to the success of the plant.

2008 ◽  
Vol 2008 (1) ◽  
pp. 331-338 ◽  
Author(s):  
Bernard Fichaut ◽  
Bahr Loubnan

ABSTRACT Following the bombardment of the Jyeh power station in Lebanon on July 16 2006, about 10 to 15000 tons of heavy fuel oil drifted 150 km northward all the way to the Syrian border. Because of the continuing war, the cleanup operations could not start until early September. The response consisted of conceptually dividing the coast line into several sectors managed by various operators; from Jyeh to Beyrouth, a 34.5 km stretch of shoreline, the treatment of beaches was assigned to the lebanese N.G.O “Bahr Loubnan’. In this area, 5.3 km of sandy and gravel beaches appeared to be heavily oiled on a width that seldomly exceeded 10 m. Oil was found buried down to a depth of 1.8 m at several locations. Additionnally oil was also found sunken in shallow waters in the breaker zones of numerous beaches. In order to minimize sediment removal and production of oily waste to be treated, it was decided to operate massive treatmenN in situ. After manual recovery of stranded oil, about 12,000 m of sediment including 1,000 m of cobbles have been relocated in the surf zone. Despite the lack of tides and of the generally calm weather conditions, surfwashing was very efficient due mainly to the fact that, in non tidal conditions, sediments are continuously reworked by wave açtion which operates at the same level on the beaches. Only 540 m of heavily oiled sand, was removed from beaches and submitted for further treatment. The lack of appropriate sorbents material in Lebanon to capture the floating oil released by surfwahing was also a challenge. This was addressed by using locally Nmanufactured sorbents, which proved to be very efficient and 60 m of sorbent soaked with oil were produced during the cleanup.


2002 ◽  
Vol 124 (3) ◽  
pp. 534-541 ◽  
Author(s):  
Z. R. Khalaf ◽  
B. Basler

This paper presents the O&M experience at the Kalaeloa Cogeneration Plant. Performance issues and other problems related to firing heavy oil in a combustion turbine are presented together with their long-term solutions leading to the current successful operation of the IPP power station in Hawaii, USA.


Author(s):  
Vikram Muralidharan ◽  
Matthieu Vierling

Power generation in south Asia has witnessed a steep fall due to the shortage of natural gas supplies for power plants and poor water storage in reservoirs for low hydro power generation. Due to the current economic scenario, there is worldwide pressure to secure and make more gas and oil available to support global power needs. With constrained fuel sources and increasing environmental focus, the quest for higher efficiency would be imminent. Natural gas combined cycle plants operate at a very high efficiency, increasing the demand for gas. At the same time, countries may continue to look for alternate fuels such as coal and liquid fuels, including crude and residual oil, to increase energy stability and security. In over the past few decades, the technology for refining crude oil has gone through a significant transformation. With the advanced refining process, there are additional lighter distillates produced from crude that could significantly change the quality of residual oil used for producing heavy fuel. Using poor quality residual fuel in a gas turbine to generate power could have many challenges with regards to availability and efficiency of a gas turbine. The fuel needs to be treated prior to combustion and needs a frequent turbine cleaning to recover the lost performance due to fouling. This paper will discuss GE’s recently developed gas turbine features, including automatic water wash, smart cooldown and model based control (MBC) firing temperature control. These features could significantly increase availability and improve the average performance of heavy fuel oil (HFO). The duration of the gas turbine offline water wash sequence and the rate of output degradation due to fouling can be considerably reduced.


Author(s):  
Jean-Pierre Stalder ◽  
Peter A. Huber

The use of “clean” fuel is a prerequisite at today’s elevated gas turbine firing temperature, modern engines are more sensitive to high temperature corrosion if there are impurities present in the fuel and/or in the combustion air. It is a common belief that distillate grade fuels are contaminant-free, which is often not true. Frequently operators burning distillates ignore the fuel quality as a possible source of difficulties. This matter being also of concern in plants mainly operated on natural gas and where distillate fuel oil is the back-up fuel. Distillates may contain water, dirt and often trace metals such as sodium, vanadium and lead which can cause severe damages to the gas turbines. Sodium being very often introduced through contamination with seawater during the fuel storage and delivery chain to the plant, and in combination, or with air borne salt ingested by the combustion air. Excursions of sodium in treated crude or heavy fuel oil can occur during unnoticed malfunctions of the fuel treatment plant, when changing the heavy fuel provenience without centrifuge adjustment, or by inadequate fuel handling. For burning heavy fuel, treatment with oil-soluble magnesium fuel additive is state of the art to inhibit hot corrosion caused by vanadium. Air borne salts, sodium, potassium and lead contaminated distillates, gaseous fuels, washed and unwashed crude and residual oil can not be handled by simple magnesium based additives. The addition of elements like silicon and/or chromium is highly effective in reducing turbine blade hot corrosion and hot section fouling. This paper describes field experience with the use of chromium containing fuel additive to reduce high temperature corrosion of hot section parts, as well as the interaction of oil-soluble chromium and magnesium-chromium additives on material behaviour of blades and vanes, and their economical and environmental aspects.


2001 ◽  
Vol 2001 (1) ◽  
pp. 479-483 ◽  
Author(s):  
Gerard P. Canevari ◽  
Peter Calcavecchio ◽  
K. W. Becker ◽  
R. R. Lessard ◽  
Robert J. Fiocco

ABSTRACT Oil viscosity has been perceived as a major factor affecting the dispersibility of oil. Very high viscosity oils—20,000 centistokes (cs) or more—can readily be observed as resisting the breakup of the oil into dispersed droplets. However, there are instances where a relatively viscous oil will disperse much more readily than another oil of similar viscosity. An extensive study has been conducted at ExxonMobil Research facilities in New Jersey to define the molecular makeup of 14 viscous heavy fuel oil products and determine the property of the viscous oils, besides viscosity, that influences dispersibility. Dispersibility was measured by a standard laboratory dispersant test using a COREXIT dispersant selected from the U.S. Environmental Protection Agency (EPA) National Contingency Plan (NCP) Product Schedule. Initially, IATROSCAN (TLC) and gas chromatography data failed to show any correlation between chemical properties, such as sulfur, aromatics, paraffins, resins, vanadium, nickel content, etc., and dispersibility. However, the analysis did identify a statistically significant relationship between a parameter based on normal paraffin content and dispersibility, which helps explain anomalies such as low viscosity oils that do not disperse. These results are expected to aid in guiding oil spill response for viscous oils.


2020 ◽  
Vol 34 (7) ◽  
pp. 8403-8413
Author(s):  
Michael D. Kass ◽  
Beth L. Armstrong ◽  
Brian C. Kaul ◽  
Raynella Maggie Connatser ◽  
Samuel Lewis ◽  
...  

Author(s):  
Antonio Diego-Marin ◽  
Carlos Melendez-Cervantes ◽  
Armando Giles-Alarcon

A study was carried out to find out the cause of premature plugging of air heaters of a 350 MWe oil fired boiler. The unit burnt a heavy fuel oil number 6, with both high levels of sulfur (3.75%) and asphaltenes (16.2%), as well as high viscosity (555 SSF at 50°C) and API gravity of 11.2. Particle concentration at the furnace exit and at the stack were measured, also flue gas analyses were performed at the same sites. In the furnace were employed water cooled probes of six meters in length which allowed traversing 70% of its width. In addition, the oil droplet size distribution from an atomizer was measured with a Malver Particle Sizer. Cold condition using simulating fluids were taken in this analysis. Also, the unburned carbon particles size distribution, both from the furnace exit and from the stack, was performed with a particle Malver Sizer. The atomizer produced large oil drops, 5.7% by volume larger than 300 micron size, which were considered as promoters of unburned carbon. The concentration of carbon particles in the stack was 60% of that of the furnace exit. Furthermore, the particles from the stack were of smaller size (95% <150 μm) than those of the furnace (89% <150 μm). Deposition of carbon particles in the internal component of the boiler, mainly in the air heaters, was the cause of this finding. To solve the premature plugging of the air heaters of this oil fired boiler, the atomizers should be modified to reduce at a minimum level the oil drops larger than 200 micron size.


2015 ◽  
Vol 656-657 ◽  
pp. 142-147 ◽  
Author(s):  
Tien Chiu Hsu ◽  
S.I. Yang

Coal is currently the most widely used and most abundant fossil fuel in the world. It is primarily used for generating electricity at power plants. However, due to problems of pollution and energy consumption, importance has been placed on the development of clean coal technology. Coal-water slurry (CWS), consisting of fine coal and water mixture, is a liquid fuel used to replace heavy fuel oil for boilers and entrained flow gasifiers. Since CWS is a liquid with high viscosity and regular atomizing burners are designed for the use of fossil fuels with low viscosity, it is necessary to design high efficiency atomizing burners specific for CWS. As viscosity is a key factor for atomization characteristics, we used silicon oils of different viscosity as the testing liquids, to study the effect of different atomization parameters on the atomization characteristics. Our results show that, when the gas to liquid ratio (GLR) is high, the existing particle velocity at the central axis is lower than low GLR condition; likewise, the velocity at radial positions is higher of the high-viscosity case. The velocity also increases as the radial distance further increases away from the axis. And decrease as the GLR increases. On the other hand, the distribution of the velocities does not change after the radial distance reaches a certain limit. This limit decreases as the axial length increases. Increasing viscosity increases the inertial force of the liquid fluid, so the momentum of the atomization gas needs to be increased for it to generate enough shear stress on the fluid and to enhance the atomization characteristics.


Author(s):  
Nuhuman Marikkar ◽  
Tharindu Jayath ◽  
Kithsiri Egodawatta ◽  
Matthieu Vierling ◽  
Maher Aboujaib ◽  
...  

In regions developing rapidly but deprived of natural gas, gas turbines (GT) in combined cycles (CC) fired on Heavy Fuel Oil (HFO) can represent effective and environmentally viable power generation options. The 300 MW Yugadanavi plant in Sri Lanka, which features two 9E GTs burning low-sulfur HFO, best exemplifies this specific situation. This project was fast-tracked in 2006, when the country started its fast development and the national grid needed fast power additions and frequency stability. Since 2008, it has been supplying 200 MWe to the Ceylonese grid, in simple cycle. Then in 2010, its capacity rose up to 300 MWe without any extra fuel consumption, after its conversion to a combined cycle. In November 2016, Yugadanavi has completed 55,000 hours of successful operation, has generated 6,000 TWh and burned 1 million tons of HFO achieving on average efficiency and reliability performances as high as 44% and 96% respectively. Starting 2010, LTL and GE joined their efforts in plant upgrade initiatives. In 2014 they demonstrated an efficient method to reduce the smoke emissions, using benign combustion catalysts. Within a next upgrade step, a new vanadium inhibition technology has been field-tested in 2015–2016, which enables improving the availability and energy performances of the plant by namely increasing the firing temperature of the gas turbines. After recalling the key milestones of this significant HFO project, the joint paper will outline the operation experience and positive environmental outcomes of the developments carried out within an LTL-GE collaboration, with a special emphasis on the most recent results obtained with the new inhibition technology.


2016 ◽  
Vol 61 (Special Issue) ◽  
pp. S60-S66 ◽  
Author(s):  
I. Janoško ◽  
M. Čery

Animal waste represents a&nbsp;significant threat to the environment. Degradation of waste from dead animals is in general carried out in specialized facilities (rendering plants) under specific rules and guidelines. In plant proximity, undesirable malodour is usually produced during the combustion process. This odour can be effectively reduced so that it does not negatively affect the environment and society. Degradation of animal waste malodour can be processed in ozonisers, thermal combustion devices or in bio washers. The purpose of this paper is to determine the limits of exhausts that are produced during direct combustion of animal waste malodour. The level of ammonia in the combustion air is dependent on the quality of raw material processed at rendering plants where the measurements were carried out. In order to reduce the economic costs, the use of alternative fuels (animal fat, heavy fuel oil) is recommended.


Sign in / Sign up

Export Citation Format

Share Document