scholarly journals FEM Model to Support Electro Chemical Drilling of Turbulated Cooling Holes

Author(s):  
M. H. H. van Dijk ◽  
B. T. M. Verhappen ◽  
J. K. M. Jansen ◽  
M. J. Noot

Airfoils of industrial gasturbines are provided with longitudinal cooling holes. The cooling efficiency of these holes may be improved by introducing multiple ribs, so-called turbulators. The Electro Chemical Drilling process is used to drill longitudinal cooling holes with or without turbulators in casted as well as in forged airfoils. Turbulated cooling holes are drilled by varying process parameters during drilling. A FEM model is developed to determine the effect of parameter variations on the shape of the turbulators. The model can also be used to study the effect of fluctuations of parameters on the quality of straight and turbulated holes. The feasibility of the model is demonstrated by comparing calculated and experimental results of a step-wise variation of the cathode voltage.

2016 ◽  
Vol 835 ◽  
pp. 236-241
Author(s):  
P.Y.M. Wibowo Ndaruhadi ◽  
Bambang Santosa

Drilling process has many applications including making molds and dies, all requires different quality of the drilled hole. The aim of this study is to establish models and optimization of cutting parameter to get the best hole quality, including enlargement diameter, circularity error and surface roughness in drilling hardened steel. Drilling experiments have been performed using different cutting parameters (i.e. cutting speed and feed rate) and employ and uncoated carbide drill under flooded cooling. The experimental results show that both of the cutting speed and feed rate significantly affect all responses. Models for responses have been developed for investigation in this study, and their optimizations have been obtained, showing better quality of the drilled hole produced at higher cutting speed and lower feed rate. Desirability for the optimum criteria is 0.944 at the highest cutting speed (60 m/min) and lowest feed rate (0.05 mm/rev).


2013 ◽  
Vol 584 ◽  
pp. 73-78
Author(s):  
Zhi Yong Li ◽  
Hong Bin Cui ◽  
Pei Yu Dong ◽  
Tao Liu

To improve the mechanical properties of the EDM electrode material, the electroforming process for fabricating copper-nanozirconia (ZrO2) particles composite aided by ultrasonic has been presented. In this research, some vital process parameters such as concentration of ZrO2, rotational speed and ultrasonic frequency have been evaluated. Two inspection criteria, content of ZrO2and micro hardness of deposited layer were employed to evaluate the fabrication quality of copper-nanozirconia (ZrO2) composite material. The experimental results indicate that nanocomposites grains electroformed aided by ultrasonic are refined. Their organizations are more uniform and dense, the surface is flatter and the microhardness of nanocomposites is significantly improved.


GIS Business ◽  
2020 ◽  
Vol 14 (6) ◽  
pp. 1062-1069
Author(s):  
S.Ramesh ◽  
B.A.Vasu

This paper is an attempt to assess if the manufacturing process of paper machine is in statistical control thereby improving the quality of paper being produced in a paper industry at the time of process itself. Quality is the foremost criteria for achieving the business target. Therefore, emphasis was made on controlling the quality of paper at the time of manufacturing process itself, rather than checking the finished lots at a later time.  This control on quality will help the industry deduct the small shift in the process parameters and modify the operating characteristics at the time of production itself rather than receiving complaints from customers at a later stage.  This paper describes controlling quality at the time of manufacture itself and helps the industry to concentrate on quality at low cost. The researcher has collected primary data at a leading paper industry during October, 2019.  Though X-bar and Range charges were primarily used, CUSUM charts were used to sense the minor shifts in manufacturing process, to explore the possibility of adjusting process parameters during manufacture of paper.


2021 ◽  
Vol 40 (5) ◽  
pp. 9361-9382 ◽  
Author(s):  
Naeem Iqbal ◽  
Rashid Ahmad ◽  
Faisal Jamil ◽  
Do-Hyeun Kim

Quality prediction plays an essential role in the business outcome of the product. Due to the business interest of the concept, it has extensively been studied in the last few years. Advancement in machine learning (ML) techniques and with the advent of robust and sophisticated ML algorithms, it is required to analyze the factors influencing the success of the movies. This paper presents a hybrid features prediction model based on pre-released and social media data features using multiple ML techniques to predict the quality of the pre-released movies for effective business resource planning. This study aims to integrate pre-released and social media data features to form a hybrid features-based movie quality prediction (MQP) model. The proposed model comprises of two different experimental models; (i) predict movies quality using the original set of features and (ii) develop a subset of features based on principle component analysis technique to predict movies success class. This work employ and implement different ML-based classification models, such as Decision Tree (DT), Support Vector Machines with the linear and quadratic kernel (L-SVM and Q-SVM), Logistic Regression (LR), Bagged Tree (BT) and Boosted Tree (BOT), to predict the quality of the movies. Different performance measures are utilized to evaluate the performance of the proposed ML-based classification models, such as Accuracy (AC), Precision (PR), Recall (RE), and F-Measure (FM). The experimental results reveal that BT and BOT classifiers performed accurately and produced high accuracy compared to other classifiers, such as DT, LR, LSVM, and Q-SVM. The BT and BOT classifiers achieved an accuracy of 90.1% and 89.7%, which shows an efficiency of the proposed MQP model compared to other state-of-art- techniques. The proposed work is also compared with existing prediction models, and experimental results indicate that the proposed MQP model performed slightly better compared to other models. The experimental results will help the movies industry to formulate business resources effectively, such as investment, number of screens, and release date planning, etc.


2021 ◽  
Vol 3 (3) ◽  
Author(s):  
V. Chengal Reddy ◽  
Thota Keerthi ◽  
T. Nishkala ◽  
G. Maruthi Prasad Yadav

AbstractSurface roughness and heat-affected zone (HAZ) are the important features which influence the performance of the laser-drilled products. Understanding the influence of laser process parameters on these responses and identifying the cutting conditions for simultaneous optimization of these responses are a primary requirement in order to improve the laser drilling performance. Nevertheless, no such contribution has been made in the literature during laser drilling of AISI 303 material. The aim of the present work is to optimize the surface roughness (Ra) and HAZ in fibre laser drilling of AISI 303 material using Taguchi-based grey relational analysis (GRA). From the GRA methodology, the recommended optimum combination of process parameters is flushing pressure at 30 Pa, laser power at 2000 W and pulse frequency at 1500 Hz for simultaneous optimization of Ra and HAZ, respectively. From analysis of variance, the pulse frequency is identified as the most influenced process parameters on laser drilling process performance.


Proceedings ◽  
2020 ◽  
Vol 70 (1) ◽  
pp. 103
Author(s):  
Jin Mark D. G. Pagulayan ◽  
Aprille Suzette V. Mendoza ◽  
Fredelyn S. Gascon ◽  
Jan Carlo C. Aningat ◽  
Abigail S. Rustia ◽  
...  

The study aimed to evaluate the effects of process parameters (time and raw material weight (RMW)) of conventional (boiling for 10–45 min) and microwave-assisted (2–8 min) aqueous extraction on the color quality (i.e., lightness (L*), chroma (C*), and hue (H°) of anthocyanin –based colorants of red and Inubi sweet potato (Ipomoea batatas L.) leaves. Using response surface methodology, it was found that RMW and boiling time (BT) and microwave time (MT) generally had a significant (p < 0.05) effect on the color quality of the extract from both extraction methods. The effects were found to vary depending on the extraction method and variety of the leaves used. Both extraction methods produced a brown to brick-red extract from the Inubi variety that turned red-violet to pink when acidified. The red sweet potato leaves produced a deep violet colored extract that also turned red-violet when acidified. It is recommended that the anthocyanin content of the extracts be measured to validate the impact of the methods on the active agent. Nevertheless, the outcomes in this study may serve as baseline data for further studies on the potential of sweet potato leaf colorants (SPLC) as a colorant with functional properties.


Energies ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 673
Author(s):  
Augustyn Wójcik ◽  
Piotr Bilski ◽  
Robert Łukaszewski ◽  
Krzysztof Dowalla ◽  
Ryszard Kowalik

The paper presents the novel HF-GEN method for determining the characteristics of Electrical Appliance (EA) operating in the end-user environment. The method includes a measurement system that uses a pulse signal generator to improve the quality of EA identification. Its structure and the principles of operation are presented. A method for determining the characteristics of the current signals’ transients using the cross-correlation is described. Its result is the appliance signature with a set of features characterizing its state of operation. The quality of the obtained signature is evaluated in the standard classification task with the aim of identifying the particular appliance’s state based on the analysis of features by three independent algorithms. Experimental results for 15 EAs categories show the usefulness of the proposed approach.


Author(s):  
Nitin P. Sherje ◽  
Sameer A. Agrawal ◽  
Ashish M. Umbarkar ◽  
Prashant P. Kharche ◽  
Dharmesh Dhabliya

Sign in / Sign up

Export Citation Format

Share Document