Common Currency for System Integration of High Intensity Energy Subsystems

Author(s):  
David M. Pratt ◽  
David J. Moorhouse

Aerospace vehicle design has progressed in an evolutionary manner, with certain discrete changes such as turbine engines replacing propellers for higher speeds. The evolution has worked very well for commercial aircraft because the major components can be optimized independently. This is not true for many military configurations which require a more integrated approach. In addition, the introduction of aspects for which there is no pre-existing database requires special attention. Examples of subsystem that have no pre-existing data base include directed energy weapons (DEW) such as high power microwaves (HPM) and high energy lasers (HEL). These devices are inefficient, therefore a large portion of the energy required to operate the device is converted to waste heat and must be transferred to a suitable heat sink. For HPM, the average heat load during one ‘shot’ is on the same order as traditional subsystems and thus designing a thermal management system is possible. The challenge is transferring the heat from the HPM device to a heat sink. The power density of each shot could be hundreds of megawatts. This heat must be transferred from the HPM beam dump to a sink. The heat transfer must occur at a rate that will support shots in the 10–100Hz range. For HEL systems, in addition to the high intensity, there are substantial system level thermal loads required to provide an ‘infinite magazine.’ Present models are inadequate to analyze these problems, current systems are unable to sustain the energy dissipation required and the high intensity heat fluxes applied over a very short duration phenomenon is not well understood. These are examples of potential future vehicle integration challenges. This paper addresses these and other subsystems integration challenges using a common currency for vehicle optimization. Exergy, entropy generation minimization, and energy optimization are examples of methodologies that can enable the creation of energy optimized systems. These approaches allow the manipulation of fundamental equations governing thermodynamics, heat transfer, and fluid mechanics to produce minimized irreversibilities at the vehicle, subsystem and device levels using a common currency. Applying these techniques to design for aircraft system-level energy efficiency would identify not only which subsystems are inefficient but also those that are close to their maximum theoretical efficiency while addressing diverse system interaction and optimal subsystem integration. Such analyses would obviously guide researchers and designers to the areas having the highest payoff and enable departures from the evolutionary process and create a breakthrough design.

Author(s):  
Ayman Megahed ◽  
Ibrahim Hassan ◽  
Tariq Ahmad

The present study focuses on the experimental investigation of boiling heat transfer characteristics and pressure drop in a silicon microchannel heat sink. The microchannel heat sink consists of a rectangular silicon chip in which 45 rectangular microchannels were chemically etched with a depth of 295 μm, width of 254 μm, and a length of 16 mm. Un-encapsulated Thermochromic liquid Crystals (TLC) are used in the present work to enable nonintrusive and high spatial resolution temperature measurements. This measuring technique is used to provide accurate full and local surface-temperature and heat transfer coefficient measurements. Experiments are carried out for mass velocities ranging between 290 to 457 kg/m2.s and heat fluxes from 6.04 to 13.06 W/cm2 using FC-72 as the working fluid. Experimental results show that the pressure drop increases as the exit quality and the flow rate increase. High values of heat transfer coefficient can be obtained at low exit quality (xe < 0.2). However, the heat transfer coefficient decreases sharply and remains almost constant as the quality increases for an exit quality higher than 0.2.


2020 ◽  
Vol 20 (7) ◽  
pp. 2858-2874
Author(s):  
Mostafa Abd El-Rady Abu-Zeid ◽  
Xiaolong Lu ◽  
Shaozhe Zhang

Abstract The low flux and high energy consumption problems of the conventional three-stage air-gap membrane distillation (AG-AG-AG)MD system caused by the low temperature difference between hot and cold feed at both sides of the membrane and high boundary layer thickness were solved successfully by replacing one of the three stages of air gaps by a water gap. The novel three-stage air-gap–water-gap membrane distillation (AG-AG-WG)MD system reduced energy consumption and increased flux due to efficient internal heat recycling by virtue of a water-gap module. Heat and mass transfer in novel and conventional three-stage systems were analyzed theoretically. Under a feed temperature of 45 °C, flow rate of 20 l/h, cooling temperature of 20 °C, and concentration of 340 ppm, the (AG-AG-WG)MD promoted flux by 17.59% and 211.69%, and gained output ratio (GOR) by 60.57% and 204.33% compared with two-stage (AG-WG)MD and one-stage AGMD, respectively. This work demonstrated the important role of a water gap in changing the heat and mass transfer where convection heat transfer across the water gap is faster by 24.17 times than conduction heat transfer through the air gap. The increase in flux and GOR economized the heating energy and decreased waste heat input into the system. Additionally, the number of MD stages could increase the achieving of a high flux with operation stability.


Author(s):  
M. Ferraiuolo ◽  
A. Martucci ◽  
F. Battista ◽  
D. Ricci

Today’s rocket engines regeneratively cooled using high energy cryogenic propellants (e.g. LOX and LH2, LOX and LCH4) play a major role due to the high combustion enthalpy (10–13.4 kJ/kg) and the high specific impulse of these propellants. In the frame of the HYPROB/Bread project, whose main goal is to design build and test a 30 kN regeneratively cooled thrust chamber, a breadboard has been conceived in order to: • investigate the behavior of the injector that will be employed in the full scale final demonstrator, • to obtain a first estimate of the heat flux on the combustion chamber for models validation, • to implement a “battleship” chamber for a first verification of the stability of the combustion The breadboard is called HS (Heat Sink) and it is made of CuCrZr (Copper Chromium Zirconium alloy), Inconel 718 and TZM (Titanium Zirconium Molybdenum alloy). The aim of the present paper is to illustrate the thermostructural design conducted on the breadboard by means of a Finite Element Method code taking into account the viscoplastic behavior of the adopted materials. An optimization process has been carried out in order to keep the structural integrity of the breadboard maximizing the life cycles of the component. Heat fluxes generated by combustion gases have been evaluated by means of CFD quick analyses, while convection and radiation with the external environment have not been considered in order to be as conservative as possible from a thermostructural point of view. Transient thermal analyses and static structural analyses have been performed by means of ANSYS code adopting an axisymmetric model of the chamber. These analyses have demonstrated that the Breadboard can withstand the design goal of 3 thermo-mechanical cycles with a safety factor equal to 4 considering a firing time equal to 3 seconds.


2009 ◽  
Vol 131 (3) ◽  
Author(s):  
V. Egan ◽  
P. A. Walsh ◽  
E. Walsh ◽  
R. Grimes

Reliable and efficient cooling solutions for portable electronic devices are now at the forefront of research due to consumer demand for manufacturers to downscale existing technologies. To achieve this, the power consumed has to be dissipated over smaller areas resulting in elevated heat fluxes. With regard to cooling such devices, the most popular choice is to integrate a fan driven heat sink, which for portable electronic devices must have a low profile. This paper presents an experimental investigation into such low profile cooling solutions, which incorporate one of the smallest commercially available fans in series with two different heat sink designs. The first of these is the conventionally used finned heat sink design, which was specifically optimized and custom manufactured in the current study to complement the driving fan. While the second design proposed is a novel “finless” type heat sink suitable for use in low profile applications. Together the driving fan and heat sinks combined were constrained to have a total footprint area of 465 mm2 and a profile height of only 5 mm, making them ideal for use in portable electronics. The objective was to evaluate the performance of the proposed finless heat sink design against a conventional finned heat sink, and this was achieved by means of thermal resistance and overall heat transfer coefficient measurements. It was found that the proposed finless design proved to be the superior cooling solution when operating at low fan speeds, while at the maximum fan speed tested of 8000 rpm both provided similar performance. Particle image velocimetry measurements were used to detail the flow structures within each heat sink and highlighted methods, which could further optimize their performance. Also, these measurements along with corresponding global volume flow rate measurements were used to elucidate the enhanced heat transfer characteristics observed for the finless design. Overall, it is shown that the proposed finless type heat sink can provide superior performance compared with conventional finned designs when used in low profile applications. In addition a number of secondary benefits associated with such a design are highlighted including lower cost, lower mass, lower acoustics, and reduced fouling issues.


2014 ◽  
Vol 136 (2) ◽  
Author(s):  
T. David ◽  
D. Mendler ◽  
A. Mosyak ◽  
A. Bar-Cohen ◽  
G. Hetsroni

The thermal characteristics of a laboratory pin-fin microchannel heat sink were empirically obtained for heat flux, q″, in the range of 30–170 W/cm2, mass flux, m, in the range of 230–380 kg/m2 s, and an exit vapor quality, xout, from 0.2 to 0.75. Refrigerant R 134a (HFC-134a) was chosen as the working fluid. The heat sink was a pin-fin microchannel module installed in open flow loop. Deviation from the measured average temperatures was 1.5 °C at q = 30 W/cm2, and 2.0 °C at q = 170 W/cm2. These results indicate that use of pin-fin microchannel heat sink enables keeping an electronic device near uniform temperature under steady state and transient conditions. The heat transfer coefficient varied significantly with refrigerant quality and showed a peak at an exit vapor quality of 0.55 in all the experiments. At relatively low heat fluxes and vapor qualities, the heat transfer coefficient increased with vapor quality. At high heat fluxes and vapor qualities, the heat transfer coefficient decreased with vapor quality. A noteworthy feature of the present data is the larger magnitude of the transient heat transfer coefficients compared to values obtained under steady state conditions. The results of transient boiling were compared with those for steady state conditions. In contrast to the more common techniques, the low cost technique, based on open flow loop was developed to promote cooling using micropin fin sinks. Results of this experimental study may be used for designing the cooling high power laser and rocket-born electronic devices.


Author(s):  
Jong K. Cha ◽  
Thomas Y. Lee ◽  
Yong X. Gan

Internal combustion (IC) engines typically have an efficiency of less than 35%. This is largely due to the fact that much of the energy dissipates into waste heat. However, the waste heat may be converted into electricity by using energy conversion modules made from bismuth telluride. In this work, it is demonstrated that electricity can be generated from waste heat due to the difference in temperatures. The thermal to electrical energy conversion is achieved by using a self-assembled thermoelectric generator (TEG). The TEG (thermoelectric generator) uses two different types of metallic compound semiconductors, known as n-typed and p-typed, to create voltage when the junctions are held at different temperatures. The work mechanism is based on the Seebeck effect. In this study, the TEGs are made from bismuth telluride (Bi-Te) with relatively high energy conversion efficiencies. In addition, it is readily available. The installation location of the TEG is studied. For testing purposes and convenience, the top of the radiator of a 1990 Mazda Miata car was chosen. The TEG and an aluminum finned heat sink were placed in order on the top of the radiator. Thermal paste was applied to both surfaces and secured with zip ties. A vent was cut on the hood of the car to promote airflow between the fins. Appropriate electrical wiring allowed the unit to output to a digital multi-meter which was located within the car for operator to take data. It is found from the measured results that 0.948 V is the maximum output and the average voltage is 0.751 V. The highest voltage came from driving mountain paths due to the heat sink and coolant temperature being higher than nominal. We estimate that placing an insulator between the heat sink and TEG would push the maximum voltage over 1.0 V. During the cool down phase, the TEG produced electricity continuously with a maximum voltage of 0.9 V right after engine cutoff. The voltage decreased to about 0.6 V within 40 minutes. It is found that the relationship between the temperature difference and output voltage is linear.


Author(s):  
Venugopal Gandikota ◽  
Harish Chengalvala ◽  
Amy S. Fleischer ◽  
G. F. Jones

The on-going trend towards increasing device performance while shrinking device size often results in escalating power densities and high operating temperatures. High operating temperatures may lead to reduced reliability and induced thermal stresses. Therefore, it is necessary to employ new and innovative thermal management techniques to maintain a suitable junction temperature at high power densities. For this reason, there is interest in a variety of liquid cooling techniques. This study analyzes a composite material heat sink. The heat sink consists of a very large number of small cross-section fins fabricated from carbon pitch fibers and epoxy. These carbon pitch fibers have a high thermal conductivity along the length of the fin. It is expected that the longer length will result in more heat transfer surface area and a more effective heat sink. This experimental study characterizes the thermal performance of the carbon-fiber heat sink in a two-phase closed loop thermosyphon using FC-72 as the operating fluid. The influence of heat load, thermosyphon fill volume, and condenser operating temperature on the overall thermal performance is examined. The results of this experiment provide significant insight into the possible implementation and benefits of carbon fiber heat sink technology in two-phase flow leading to significant improvements in thermal management strategies for advanced electronics. The carbon fiber heat sink yielded heat transfer coefficients in the range of 1300-1500 W/m2 K for heat fluxes in the range up to 3.2 W/cm2. Resistances in the range of 0.20 K/W – 0.23 K/W were achieved for the same heat fluxes. Condenser temperature and fill ratio did not show a significant effect on any of the results.


Author(s):  
David E. Lee ◽  
Bill Nesmith ◽  
Terry Hendricks ◽  
Juan Cepeda-Rizo ◽  
Michael Petach ◽  
...  

The FSPOT-X Project, focused on maximizing exergy generated from AM1.5 sunlight, targets an overall system efficiency of >35%. The objective hybrid power system will deliver grid-ready AC power while simultaneously providing thermal energy storage for dispatchable electrical power generation in post sunset conditions. The challenging system-level requirements flow-down critical temperature differential and thermal transport requirements to multiple system components and their interfaces. By integrating and demonstrating multiple technologies, the FSPOT-X hybrid power system seeks to efficiently convert photons to electrons maximizing heat transfer efficiency across system element interfaces. These include: I1) capturing all incident sunlight from the solar concentrator in a receiver cavity to maximize energy generation from the CPV cells, I2) extracting PV thermalization heat from the receiver and into the reflux chamber, I3) moving heat from the reflux chamber through the thermal transfer interface, I4) using the thermal transfer interface to shift heat into the TAPC’s hot heat exchanger, I5) storing excess unused heat in phase change material, and I6) disposal of waste heat at the system level. For each of these thermal interfaces, effective and efficient technical means are being used and applied in order to maximize overall system efficiency for delivery of a next generation cost-effective and market-ready solar power system.


2011 ◽  
Vol 204-210 ◽  
pp. 1481-1484
Author(s):  
Zhong Min Wan ◽  
Zheng Kai Tu ◽  
Jing Liu

A novel porous micro heat sink system is presented for thermal management of high power LEDs, which has high heat transport capability. Numerical model for the micro heat sink is developed to describe liquid flow and heat transfer based on the local thermal equilibrium of porous media, and it is solved with SIMPLE algorithm. The numerical results show that the heated surface temperature of porous micro heat sink is low at high heat fluxes and is much less than the bearable temperature level of LED chips. The heat transfer coefficient of heat sink is very high, and increasing the liquid velocity can enhance the average heat transfer coefficient. The overall pressure loss of heat sink system increases with the increasing the inlet velocity, but the overall pressure drop is much less than the pumping pressure provided by micro pump.


1999 ◽  
Vol 121 (2) ◽  
pp. 108-115 ◽  
Author(s):  
L. Tang ◽  
Y. K. Joshi

In the present paper, a methodology is described for the integrated thermal analysis of a laminar natural convection air cooled nonventilated electronic system. This approach is illustrated by modeling an enclosure with electronic components of different sizes mounted on a printed wiring board. First, a global model for the entire enclosure was developed using a finite volume computational fluid dynamics/heat transfer (CFD/CHT) approach on a coarse grid. Thermal information from the global model, in the form of board and component surface temperatures, local heat transfer coefficients and reference temperatures, and heat fluxes, was extracted. These quantities were interpolated on a finer grid using bilinear interpolation and further employed in board and component level thermal analyses as various boundary condition combinations. Thus, thermal analyses at all levels were connected. The component investigated is a leadless ceramic chip carrier (LCCC). The integrated analysis approach was validated by comparing the results for a LCCC package with those obtained from detailed system level thermal analysis for the same package. Two preferred boundary condition combinations are suggested for component level thermal analysis.


Sign in / Sign up

Export Citation Format

Share Document