Hypocycloid Gear Mechanism Versus Slider-Crank Mechanism in Engines

Author(s):  
Mostafa A. ElBahloul ◽  
ELsayed S. Aziz ◽  
Constantin Chassapis

Abstract This effort investigates the feasibility of using the Hypocycloid Gear Mechanism (HGM) as an alternative to the conventional slider-crank mechanism for Internal Combustion Engine (ICE) applications. Engines incorporating the conventional slider-crank mechanism are subjected to high frictional power losses mainly due to the piston-rod assembly and the associated complex motion of the connecting rod. The unique HGM engine provides the means for the piston-rod assembly to reciprocate in a straight-line motion along the cylinder axis, thus eliminating the piston side-thrusting into the cylinder wall. To analyze the performance advantages of the HGM engine, a Matlab/Simulink model is developed for the simulation of a single-cylinder HGM engine from the throttle to the crankshaft output. The model integrates several sub-models for combustion, gas flow, heat transfer, and friction power loss of the internal gear train meshes, rolling bearings, and sliding bearings. The design of the planetary crank gearing system to satisfy the design specifications of ICE, has been derived using standard design procedures provided by AGMA. Calculated efficiency and power diagrams are plotted and compared with the performance of conventional engines in the literature. The results show that the HGM can satisfy modern ICE design requirements, achieve better engine performance characteristics, and minimize the frictional power losses. The HGM engine achieved lower frictional power losses by an average 33% of the conventional engine losses while its mechanical efficiency is enhanced by up to +24% with respect to the conventional engine.

2018 ◽  
Author(s):  
◽  
Muslim Muhsin Ali

[ACCESS RESTRICTED TO THE UNIVERSITY OF MISSOURI AT AUTHOR'S REQUEST.] The main object of this dissertation is to study the dynamic analysis of an inline internal combustion engine. This dissertation presents the kinematics and kinetic analyses of an inline internal combustion engine crank mechanism, the dynamic torque imbalance and foundation forces for a single-piston and multi-piston engines are studied as well. The objectives of this dissertation are to explore the inertial-torque characteristics and foundation forces of an inline, internal combustion engine with connecting-rod joints that are evenly spaced about the centerline of the crankshaft, and to evaluate the goodness of a mass approximation that is customarily used in machine design textbooks. In this dissertation the number of pistons within the internal combustion engine is varied from 1 to 8. In order to generalize the results, the reaction force between the ground and the crank in the x-direction and y-direction equations are nondimensionalized and shown to depend upon only six nondimensional groups, all related to the mass and geometry properties of the connecting rod and crank while the reaction force between the connecting rod and the piston in the x-direction y-direction, reaction force between the crank and the connecting rod in the x-direction y-direction, reaction force between the piston and the cylinder wall, and the inertial-torque equations are nondimensionalized all related to the mass and geometry properties of the connecting rod. As shown in this dissertation, the largest torque imbalance is exhibited by a 2-piston engine. The next largest torque imbalance is exhibited by a 3-piston engine, followed by a single-piston engine (this is not monotonic). The largest foundation forces are exhibited by a single-piston engine. The next largest foundation forces are exhibited by a 2-piston engine, followed by a 3e-piston engine, and that a dramatic reduction in the foundation forces and torque imbalance may be obtained by using 4 or more pistons in the design, when using as many as 8 pistons the foundation forces and torque imbalance essentially vanishes. It should be observed that the mass approximation captures 100 percent of the variability of the actual torque imbalance for engines that are designed with an odd number of pistons equal to or greater than three. The mass approximation captures 100 percent of the variability of the actual reaction force between the piston and cylinder wall for engines that are designed with single-piston and multi-pistons. The mass approximation captures 100 percent of the variability of the actual reaction force against piston pin for engines that are designed with single-piston. It is also shown in this dissertation that the customary mass approximations for the connecting rod may be used to simplify the analysis for all engine designs without a significant loss of modeling accuracy.


2019 ◽  
pp. 146808741989358 ◽  
Author(s):  
Mostafa A ElBahloul ◽  
ELsayed S Aziz ◽  
Constantin Chassapis

Fuel conversion efficiency is one of the main concerns in the field of internal combustion engine systems. Although the Otto cycle delivers the maximum efficiency possible in theory, the kinematics of the slider–crank mechanism of the conventional internal combustion engines makes it difficult to reach this level of efficiency in practice. This study proposes using the unique hypocycloid gear mechanism instead of the conventional slider–crank mechanism for the internal combustion engines to increase engine efficiency and minimize frictional power losses. The hypocycloid gear mechanism engine’s kinematics provides the means for the piston-rod assembly to reciprocate in a straight-line motion along the cylinder axis besides achieving a nonlinear rate of piston movement. As a result, this characteristic allows for a true constant-volume combustion, which in turn would lead to higher work output. An in-cylinder gas volume change model of the hypocycloid gear mechanism engine was developed and incorporated into the thermodynamic model for the internal combustion engine cycle. The thermodynamic model of the hypocycloid gear mechanism engine was developed and simulated using MATLAB/Simulink software. A comparison between the conventional engine and the hypocycloid gear mechanism engine in terms of engine performance characteristics showed the enhancements achieved using hypocycloid gear mechanism for internal combustion engine applications. The hypocycloid gear mechanism engine analysis results indicated higher engine efficiency approaching that of the Otto cycle.


1991 ◽  
Vol 113 (1) ◽  
pp. 86-91
Author(s):  
J. C. Prucz ◽  
J. D’Acquisto ◽  
J. E. Smith

A new analytical model has been developed in order to investigate the potential benefits of using fiber-reinforced composites in pressure vessels that undergo rigid-body motions. The model consists of a quasi-static lamination analysis of a cylindrical, filament-wound, pressure vessel, combined with an elastodynamic analysis that accounts for the coupling effects between its rigid-body motion and its elastic deformations. The particular type of motion investigated in this paper is that of an oil-pressurized, tubular connecting rod in a slider-crank mechanism of an internal combustion engine. A comprehensive parametric study has been focused on the maximum wall stresses induced in such a rod by the combined effect of internal pressure and inertia loads associated with its motion. The numerical results illustrate potential ways to reduce these stresses by appropriate selection of material systems, lay-up configurations and geometric parameters.


2013 ◽  
Vol 470 ◽  
pp. 539-542
Author(s):  
Zhi Ning Jia ◽  
Cai Zhe Hao ◽  
Jian Bo Sun ◽  
Xiang Yu Liu

The kinematic and dynamic performances of piston-connecting rod mechanism of internal combustion engine (ICE) were analyzed in detail. Taking standard slider-crank mechanism as study object, the kinematic and dynamic parameters (velocity, acceleration, angular acceleration etc.) of linkage were derived. Under no any simplification, the calculating method of each physical parameter was provided. Meanwhile, taking the factual force applied to connecting rod into account, the graphical method of vector equation was used to solve each load imposed on connecting rod. The research works were believed to be beneficial to subsequent finite element analysis (stress and train fields, fatigue of connecting rod) and size optimization design of connecting rod.


Author(s):  
Muhamad Shazarizul Haziq Mohd Samsuri ◽  
Hasril Hasini ◽  
Noor Akma Watie Mohd Noor ◽  
Meor Mohd Faisal Meor Zulkifli

This paper presents a thermogravimetric analysis and combustion test for different coals used in a coal-fired power plant in Malaysia. The main objective is to investigate the suitability of adopting a newly-introduced sub-bituminuous coal in an existing boiler furnace commonly firing standard design coals. In order to ensure that the new coal will not give an adverse effect to the boiler, detail analytical and thermal performance of the new coal is investigated, together with design and other limiting coals. The combustion test was performed in a scaled down, 150kW, single swirl burner combustion test facility available in TNB Research Sdn. Bhd. In the study, combustion gas temperature at different sectors downstream of burner region is measured to determine the peak temperature for all tested coals. Based on the investigation, it was noted that coal with the highest fixed carbon content gives the highest temperature measure at all sectors. Similarly, coal with the lowest fixed carbon gives the lowest temperature. The temperature profile for the newly tested coal was found to be comparable to the design and limiting value coals. Even though it was observed that the temperature given by the new coal is the highest slightly downstream of the burner, the temperature was observed to be decreases as combustion gas flow downstream of the combustor rig. Based on the observation it can be said that the new coal is suitable to be used by the existing boiler furnace.


2021 ◽  
Vol 16 (1) ◽  
pp. 90-95
Author(s):  
Il'mas Salahutdinov ◽  
Andrey Gluschenko ◽  
Denis Molochnikov ◽  
Sergey Petryakov ◽  
Ilnar Gayaziev

The research was carried out in order to determine the possibility of assessing the technical condition of an internal combustion engine (ICE) by the value of the total electromotive force (EMF) that occurs in its friction pairs. The contact area of the rubbing parts and the gap between them affects the electrical resistance in contact, and, accordingly, the value of the resulting EMF according to the established dependence. To confirm the theoretical results, studies were carried out on the UMP-417 engine using a developed measuring complex and a manufactured current-collecting device mounted on the output end of the engine crankshaft. With the operating mode corresponding to the speed of the crankshaft 800 min-1, the total value of the EMF in the measurement circuit cylinder liner-engine block-crankshaft-current collector (TSU) was 83...95 mV. At the same time, in the piston–cylinder liner friction pair, it was equal to 37 ... 47 mV, and in the crank mechanism friction pairs - 46...48 mV. The correspondence of the results of the theoretical calculation and bench studies of the values of the EMF value for a real internal combustion engine was: when measured using the Fluke device for the friction unit of the cylinder liner-piston – 62.1 %, for the friction units of the crank mechanism (root neck-connecting rod, connecting rod neck-connecting rod, root neck-engine block) - 15.1 %. When measured by the V1net device, for the cylinder liner – piston friction unit-85.5 %, for the crank mechanism friction units (root neck-connecting rod, connecting rod neck-connecting rod, root necks-engine block) - 93.2 %. The proposed method for determining the state of the engine by the value that occurs in its EMF friction nodes can be used in the technical diagnostics of engines


2019 ◽  
Vol 38 (2) ◽  
pp. 406-416 ◽  
Author(s):  
Marcel Mikeska ◽  
Jan Najser ◽  
Václav Peer ◽  
Jaroslav Frantík ◽  
Jan Kielar

Gas from the gasification of pellets made from renewable sources of energy or from lower-quality fuels often contains a number of pollutants. This may cause technical difficulties during the gas use in internal combustion gas engines used for energy and heat cogeneration. Therefore, an adequate system of gas cleaning must be selected. In line with such requirements, this paper focuses on the characterization and comparison of gases produced from different types of biomass during gasification. The biomass tested was wood, straw, and hay pellets. The paper gives a detailed description and evaluation of the measurements from a fix-bed gasifier for the properties of the produced gases, raw fuels, tar composition, and its particle content before and after the cleaning process. The results of elemental composition, net calorific value, moisture, and ash content show that the cleaned gases are suitable for internal combustion engine-based cogeneration systems, but unsuitable for gas turbines, where a different cleaning technology would be needed.


2006 ◽  
Vol 306-308 ◽  
pp. 453-458
Author(s):  
Hyung Man Kim ◽  
Kap Seung Choi ◽  
Chang Ho Kim ◽  
Dong Jae Lee

In the recent development of internal combustion engine, considerable increase in speed and power has been accomplished. This achievement, however, brought up various problems due to the excessive temperature of engine parts, which becomes a crucial factor in engine durability. In the present paper, temperature measurement of a marine engine was investigated experimentally. The adapter is made to pull out a thermocouple through the safety valve hole of the engine. The thermocouple is welded on the surface of the cylinder cover to measure the average temperatures of the engine cylinder cover. Ceramic adhesive was used for preventing the affect of high temperature combustion gas. The cylinder cover temperatures of the engine were measured by means of surface welding method. As a result, average temperatures of the engine cylinder cover were successfully in the range of 85~335oC. In the present study, the surface welding method was confirmed from the temperature measurement of cylinder cover in an experimental engine, and can be applied to large-sized marine engine without damage.


Sign in / Sign up

Export Citation Format

Share Document