Graded Origami Honeycomb Tube for Energy Absorption

Author(s):  
Leo de Waal ◽  
Zhong You

Abstract When loaded parallel to the prismatic cells (out-of-plane), honeycombs and re-entrant honeycombs exhibit high initial stiffness and peak force, followed by a force reduction as progressive failure occurs. The high initial peak force and large post-peak force reduction are undesirable for energy absorption purposes. In this study a graded honeycomb structure based on origami is proposed in an effort to lower the peak force, increase the energy absorption capacity and tune the stiffness throughout the loading process. The grading is achieved through a developable origami crease pattern that utilises the typical honeycomb expansion manufacturing technique. The crease pattern has one degree of freedom and is constructed from a repetition of a modified Miura-ori unit. A kinematic study of the crease pattern is completed, highlighting the simple geometric parameters that can be altered to tune the structure. Quasi-static numerical simulations are then used to investigate the interaction between these simple geometric parameters, the energy absorption capacity and the stiffness throughout the loading process. Compared to honeycomb and re-entrant honeycomb tubes, it has been found that a reduction in the peak force, increase in energy absorption capacity and tunable stiffness can be achieved.

Author(s):  
J. Clark ◽  
S. Jenson ◽  
J. Schultz ◽  
J. Hoffman ◽  
S. Takak ◽  
...  

The work presented in this paper is a continuation of the study conducted on exploring impact properties of a functionally graded bio cellular structure found in a banana peel. The graded cellular structure with unfilled cells reacts intelligently to impact loading and crushes in a manner that results in a higher amount of energy absorption as compared to an equivalent regular honeycomb structure. In this paper, a non-Newtonian fluid is introduced into the cells of a regular honeycomb structure, and its effect on energy absorption properties are studied using an experimental approach. The results are compared with impact mitigation properties of an unfilled regular honeycomb structure. The introduction of non-Newtonian fluid significantly enhances the energy absorption capacity of regular honeycomb structure, and therefore, suggests that fluid inside a banana peel structure is playing a critical role in energy and impact absorption. A rudimentary relationship between the numbers of fluid filled layers and total energy absorption capacity of the structure is presented through a regression analysis.


Crystals ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 1074
Author(s):  
Naoko Ikeo ◽  
Tatsuya Matsumi ◽  
Takuya Ishimoto ◽  
Ryosuke Ozasa ◽  
Aira Matsugaki ◽  
...  

In this study, a Ti–6Al–4V alloy composite with uniaxial anisotropy and a hierarchical structure is fabricated using electron beam powder bed fusion, one of the additive manufacturing techniques that enable arbitrary fabrication, and subsequent heat treatment. The uniaxial anisotropic deformation behavior and mechanical properties such as Young’s modulus are obtained by introducing a unidirectional honeycomb structure. The main feature of this structure is that the unmelted powder retained in the pores of the honeycomb structure. After appropriate heat treatment at 1020 °C, necks are formed between the powder particles and between the powder particles and the honeycomb wall, enabling a stress transmission through the necks when the composite is loaded. This means that the powder part has been mechanically functionalized by the neck formation. As a result, a plateau region appears in the stress–strain curve. The stress transfer among the powder particles leads to the cooperative deformation of the composites, contributing to the excellent energy absorption capacity. Therefore, it is expected that the composite can be applied to bone plates on uniaxially oriented microstructures such as long bones owing to its excellent energy absorption capacity and low elasticity to unidirectionally suppress stress shielding.


2011 ◽  
Vol 462-463 ◽  
pp. 13-17 ◽  
Author(s):  
Yan Wang ◽  
P. Xue ◽  
J.P. Wang

Honeycomb materials,as a type of ultra-light multifunctional material,have been examined extensively in recent years and have been applied in many fields. This study investigated the energy absorption capacity and their mechanisms of honeycomb structures with five different cell geometry (square,triangular,circular, hexagonal,kagome). It has been shown that the honeycomb structure with kagome cells is the best choice under the targets of the energy absorption capacity, peak force and plateau stress, when relative density and cell wall thickness of the five kinds of honeycombs are the same. Besides, honeycomb with hexagonal cells and honeycomb with triangular cells are also ideal structures for energy absorption purpose.


2008 ◽  
Vol 22 (09n11) ◽  
pp. 1730-1735 ◽  
Author(s):  
KUNIHARU USHIJIMA ◽  
DAI-HENG CHEN ◽  
HIRONOBU NISITANI

In this paper, a new type of honeycomb structure is proposed to enhance the energy absorption capacity for a honeycomb structure, and investigated its energy absorption efficiency (absorbed energy per unit volume) by finite element method (FEM). This model has small arc-shaped parts on the double cell wall, and can be manufactured by a similar way of standard honeycomb structures. Also, the proposed structure has large rigidity of plastic bending without increasing the mass. In this paper, effects of geometrical properties on the energy absorption characteristics are discussed.


2014 ◽  
Vol 606 ◽  
pp. 181-185 ◽  
Author(s):  
S. Kanna Subramaniyan ◽  
Arun Kumar Kananasan ◽  
Mohd Radzi Mohamed Yunus ◽  
Shahruddin Mahzan ◽  
Mohd Imran Ghazali

An experimental investigation was conducted to compare the crush characteristics and energy absorption capacity of circular and square tubes with located through-hole crush initiator. Circular through-holes were fabricated at three different configurations based on location into steel tubes which had a length of 200 mm. Furthermore, two different side configurations along the tube were considered for introducing the crush initiators. The results found that adding crush initiator onto the tubes were effectively reduced the initial peak force of a thin-walled circular and square tubes under axial quasi-static loading. The peak crush force was reduced within a range 3-10% and 5-16% for circular and square tubes respectively when compared with corresponding tubes without crush initiator. Moreover, the energy absorption capacity of the tubes was independent with the incorporation of through-hole crush initiators. However, the energy absorption of circular and square tubes were slightly decreases when compared with the tubes fabricated four sided crush initiation and tubes without crush initiator. Overall, the effect of location and number of crush initiation proved significantly influences the initial peak forces while maintain the energy absorbed.


2022 ◽  
Vol 2160 (1) ◽  
pp. 012064
Author(s):  
Nan Sun ◽  
Shuai Wang ◽  
Kaifa Zhou ◽  
Wenyi Ma ◽  
Bohao Xu

Abstract As a representative of metamaterials, negative Poisson’s ratio (NPR) material possesses special mechanical properties such as expansion, negative compression ratio and so forth. As a result, it is widely used in the fields of vehicles, aerospace, et al. In this paper, a novel space orthogonal concave honeycomb structure (OC) is designed based on traditional concave honeycomb structure (CHS). In order to explore the influence rule of OC structure on the deformation and energy absorption capacity of crash box under low-speed collision, mechanical analysis and parameter research on OC structure are conducted through quasi-static compression test and numerical simulation. The results suggest that the finite element results of OC structure fit well with the experimental results, and the FEM is highly credible. In addition, the novel OC sandwich structure can effectively enhance the deformation capacity and improve the energy absorption performance of the crash box. When the wall thickness ? of OC structure is 1mm and angle ? is 50°, the deformation and energy absorption capacity of the crash box increased by 25.6% and 19.3% respectively.


Author(s):  
H Geramizadeh ◽  
S Dariushi ◽  
S Jedari Salami

The current study focuses on designing the optimal three-dimensional printed sandwich structures. The main goal is to improve the energy absorption capacity of the out-of-plane honeycomb sandwich beam. The novel Beta VI and Alpha VI were designed in order to achieve this aim. In the Beta VI, the connecting curves (splines) were used instead of the four diagonal walls, while the two vertical walls remained unchanged. The Alpha VI is a step forward on the Beta VI, which was promoted by filleting all angles among the vertical walls, created arcs, and face sheets. The two offered sandwich structures have not hitherto been provided in the literature. All models were designed and simulated by the CATIA and ABAQUS, respectively. The three-dimensional printer fabricated the samples by fused deposition modeling technique. The material properties were determined under tensile, compression, and three-point bending tests. The results are carried out by two methods based on experimental tests and finite element analyses that confirmed each other. The achievements provide novel insights into the determination of the adequate number of unit cells and demonstrate the energy absorption capacity of the Beta VI and Alpha VI are 23.7% and 53.9%, respectively, higher than the out-of-plane honeycomb sandwich structures.


2021 ◽  
Vol 21 (3) ◽  
Author(s):  
S. Talebi ◽  
R. Hedayati ◽  
M. Sadighi

AbstractClosed-cell metal foams are cellular solids that show unique properties such as high strength to weight ratio, high energy absorption capacity, and low thermal conductivity. Due to being computation and cost effective, modeling the behavior of closed-cell foams using regular unit cells has attracted a lot of attention in this regard. Recent developments in additive manufacturing techniques which have made the production of rationally designed porous structures feasible has also contributed to recent increasing interest in studying the mechanical behavior of regular lattice structures. In this study, five different topologies namely Kelvin, Weaire–Phelan, rhombicuboctahedron, octahedral, and truncated cube are considered for constructing lattice structures. The effects of foam density and impact velocity on the stress–strain curves, first peak stress, and energy absorption capacity are investigated. The results showed that unit cell topology has a very significant effect on the stiffness, first peak stress, failure mode, and energy absorption capacity. Among all the unit cell types, the Kelvin unit cell demonstrated the most similar behavior to experimental test results. The Weaire–Phelan unit cell, while showing promising results in low and medium densities, demonstrated unstable behavior at high impact velocity. The lattice structures with high fractions of vertical walls (truncated cube and rhombicuboctahedron) showed higher stiffness and first peak stress values as compared to lattice structures with high ratio of oblique walls (Weaire–Phelan and Kelvin). However, as for the energy absorption capacity, other factors were important. The lattice structures with high cell wall surface area had higher energy absorption capacities as compared to lattice structures with low surface area. The results of this study are not only beneficial in determining the proper unit cell type in numerical modeling of dynamic behavior of closed-cell foams, but they are also advantageous in studying the dynamic behavior of additively manufactured lattice structures with different topologies.


Materials ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 249
Author(s):  
Przemysław Rumianek ◽  
Tomasz Dobosz ◽  
Radosław Nowak ◽  
Piotr Dziewit ◽  
Andrzej Aromiński

Closed-cell expanded polypropylene (EPP) foam is commonly used in car bumpers for the purpose of absorbing energy impacts. Characterization of the foam’s mechanical properties at varying strain rates is essential for selecting the proper material used as a protective structure in dynamic loading application. The aim of the study was to investigate the influence of loading strain rate, material density, and microstructure on compressive strength and energy absorption capacity for closed-cell polymeric foams. We performed quasi-static compressive strength tests with strain rates in the range of 0.2 to 25 mm/s, using a hydraulically controlled material testing system (MTS) for different foam densities in the range 20 g/dm3 to 220 g/dm3. The above tests were carried out as numerical simulation using ABAQUS software. The verification of the properties was carried out on the basis of experimental tests and simulations performed using the finite element method. The method of modelling the structure of the tested sample has an impact on the stress values. Experimental tests were performed for various loads and at various initial temperatures of the tested sample. We found that increasing both the strain rate of loading and foam density raised the compressive strength and energy absorption capacity. Increasing the ambient and tested sample temperature caused a decrease in compressive strength and energy absorption capacity. For the same foam density, differences in foam microstructures were causing differences in strength and energy absorption capacity when testing at the same loading strain rate. To sum up, tuning the microstructure of foams could be used to acquire desired global materials properties. Precise material description extends the possibility of using EPP foams in various applications.


Sign in / Sign up

Export Citation Format

Share Document