Utilizing 3D Printing Pens for Maintenance and Repair of Additively Manufactured Components

2021 ◽  
Author(s):  
Kyle Koren ◽  
Toluwalase Olajoyegbe ◽  
Beshoy Morkos ◽  
Hector Gutierrez

Abstract The adoption of additive manufacturing methods is becoming prevalent in industry. Socio-economic trends seek more customization and sustainability in production. An increase in unique service components will warrant the need for more flexible repair methods. This is particularly important for components that are difficult to access or disassemble — thus requiring an on-site repair. This paper introduces the use of 3D printing pens as a means to perform repair to additively manufacturing components. A study was conducted to assess the feasibility of using a 3D printing pen in maintenance, repair and overhaul (MRO) applications on polymer-based service products. A series of tensile tests were conducted on printed specimens, pre- and post-repair, to examine the tensile retention of the mended region. Results indicate significant retention in tensile strength in the mended specimens, supporting the notion of the pens relevance in repair and overhaul applications. Specimens that fractured within the repair region were seen to have retained (81 ± 10) % of their original tensile strength while specimens that fractured outside the region retained (86 ± 4) %. Considering the limited control of the study, results acquired encourage further analysis of the underlying mechanisms in the process, with the intent to more efficiently exploit this approach for practical structure-based repair applications.

2021 ◽  
Author(s):  
Alexey Pustovarenko ◽  
Beatriz Seoane ◽  
Edy Abou-Hamad ◽  
Helen E King ◽  
Bert Weckhuysen ◽  
...  

3D printing, also known as additive manufacturing technology, has greatly expanded across multiple sectors of technology replacing classical manufacturing methods by combining processing speed and high precision. The scientific interest...


Materials ◽  
2020 ◽  
Vol 13 (21) ◽  
pp. 5042
Author(s):  
Jaeyoung Kwon ◽  
Junhyeok Ock ◽  
Namkug Kim

3D printing technology has been extensively applied in the medical field, but the ability to replicate tissues that experience significant loads and undergo substantial deformation, such as the aorta, remains elusive. Therefore, this study proposed a method to imitate the mechanical characteristics of the aortic wall by 3D printing embedded patterns and combining two materials with different physical properties. First, we determined the mechanical properties of the selected base materials (Agilus and Dragonskin 30) and pattern materials (VeroCyan and TPU 95A) and performed tensile testing. Three patterns were designed and embedded in printed Agilus–VeroCyan and Dragonskin 30–TPU 95A specimens. Tensile tests were then performed on the printed specimens, and the stress-strain curves were evaluated. The samples with one of the two tested orthotropic patterns exceeded the tensile strength and strain properties of a human aorta. Specifically, a tensile strength of 2.15 ± 0.15 MPa and strain at breaking of 3.18 ± 0.05 mm/mm were measured in the study; the human aorta is considered to have tensile strength and strain at breaking of 2.0–3.0 MPa and 2.0–2.3 mm/mm, respectively. These findings indicate the potential for developing more representative aortic phantoms based on the approach in this study.


2021 ◽  
Vol 410 ◽  
pp. 299-305
Author(s):  
Artem S. Atamashkin ◽  
Elena Y. Priymak ◽  
Elena A. Kuzmina

In this work, pipe billets with a diameter of 73 mm and a wall thickness of 9 mm from steels 32G2 and 40KhN are friction welded with an aim to optimize the process parameters. The friction pressure, the forging pressure and the length of the fusion varied. After the implementation of various welding modes, tensile tests and metallographic studies were carried out. The optimal welding parameters have been established, which make it possible to obtain tensile strength at the level of the 32G2 base metal. The study results of the microstructure and SEM fractographs after the optimal welding mode are presented.


BioResources ◽  
2020 ◽  
Vol 15 (4) ◽  
pp. 7954-7964
Author(s):  
Diego Gomez-Maldonado ◽  
Maria Soledad Peresin ◽  
Christina Verdi ◽  
Guillermo Velarde ◽  
Daniel Saloni

As the additive manufacturing process gains worldwide importance, the need for bio-based materials, especially for in-home polymeric use, also increases. This work aims to develop a composite of polylactic acid (PLA) and nanofibrillated cellulose (NFC) as a sustainable approach to reinforce the currently commercially available PLA. The studied materials were composites with 5 and 10% NFC that were blended and extruded. Mechanical, structural, and thermal characterization was made before its use for 3D printing. It was found that the inclusion of 10% NFC increased the modulus of elasticity in the filaments from 2.92 to 3.36 GPa. However, a small decrease in tensile strength was observed from 55.7 to 50.8 MPa, which was possibly due to the formation of NFC aggregates in the matrix. This work shows the potential of using PLA mixed with NFC for additive manufacturing.


2014 ◽  
Vol 2014 ◽  
pp. 1-13 ◽  
Author(s):  
Godfrey C. Onwubolu ◽  
Farzad Rayegani

While fused deposition modelling (FDM) is one of the most used additive manufacturing (AM) techniques today due to its ability to manufacture very complex geometries, the major research issues have been to balance ability to produce aesthetically appealing looking products with functionality. In this study, five important process parameters such as layer thickness, part orientation, raster angle, raster width, and air gap have been considered to study their effects on tensile strength of test specimen, using design of experiment (DOE). Using group method of data handling (GMDH), mathematical models relating the response with the process parameters have been developed. Using differential evolution (DE), optimal process parameters have been found to achieve good strength simultaneously for the response. The optimization of the mathematical model realized results in maximized tensile strength. Consequently, the additive manufacturing part produced is improved by optimizing the process parameters. The predicted models obtained show good correlation with the measured values and can be used to generalize prediction for process conditions outside the current study. Results obtained are very promising and hence the approach presented in this paper has practical applications for design and manufacture of parts using additive manufacturing technologies.


Author(s):  
Christopher T. Richard ◽  
Tsz-Ho Kwok

Abstract With the emergence of new metal AM (additive manufacturing) methods, rapid IC (investment casting), a variation of conventional investment casting has been a popular topic of research in the fields of: aerospace, dentistry and biomedical engineering. RIC (Rapid investment casting) takes advantage of the additive nature of 3D printing for pattern making which allows for more complex castings than traditional investment casting. RIC is a manufacturing process that combines the casting knowledge accumulated over five thousand years with relatively novel AM knowledge. The result is a process that can compete with newer metal AM methods with the added benefits of excellent surface finish, fatigue strength and the ability to create parts from almost any metal or metal alloy. This article will focus on research advancements in investment casting, AM and all the topics that are closely related to optimizing these two processes. Beyond that, aerospace, dentistry and biomedical engineering advancements using investment casting will be reviewed.


2021 ◽  
pp. 002199832199642
Author(s):  
Ahmet İpekçi ◽  
Bülent Ekici

3D printing technology has gradually taken its place in many sectors. However, expected performance cannot be obtained from the structural parts with this method due to the raw material properties and constraints of Cartesian motion systems. This technology cannot replace structural parts produced by traditional manufacturing methods. In order to avoid these constraints, it is preferred to use continuous fiber reinforced polymer composites in many areas such as automotive and aerospace industries due to their low weight and high specific strength properties. These automated composite manufacturing methods currently have limited production of geometric shapes due to the need for additional molds and production as flat surfaces. To overcome all these constraints, fiberglass reinforced ultraviolet ray-curing polymer matrix composite material are selected for robotic 3 D printing process and various parameters are examined. Fiber-polymer combination and layer structure formation was examined. Scanning Electron Microscopy (SEM) images of sections of 3 D printed test samples were taken and fiber resin curing was examined. The nozzle diameter, printing speed, fiber density and Ultra Violet (UV) light intensity parameters, which will provide effective 3 D printing process, are optimized with the Taguchi method. Tensile strength, flexural strength and izod impact values are considered as result parameters for optimization. It was found that it would be appropriate for 3D printing with a 1.0 mm nozzle diameter, 600 tex fiber density, 4 UV light, 600 mm/min printing speed. With these 3D printing process parameters, approximately 125 MPa tensile strength and 450 MPa flexural strength can be obtained. With this study, support and contribution was provided to researchers, composite producers, tool manufacturer and literature who want to use and develop this 3D printing process.


2020 ◽  
Vol 26 (3) ◽  
pp. 127-130
Author(s):  
Nassim Markiz ◽  
Eszter Horváth ◽  
Péter Ficzere

AbstractIn the recent years, additive manufacturing became an interesting topic in many fields due to the ease of manufacturing complex objects. However, it is impossible to determine the mechanical properties of any additive manufacturing parts without testing them. In this work, the mechanical properties with focus on ultimate tensile strength and modulus of elasticity of 3D printed acrylonitrile butadi-ene styrene (ABS) specimens were investigated. The tensile tests were carried using Zwick Z005 loading machine with a capacity of 5KN according to the American Society for Testing and Materials (ASTM) D638 standard test methods for tensile properties of plastics. The aim of this study is to investigate the influence of printing direction on the mechanical properties of the printed specimens. Thus, for each printing direction ( and ), five specimens were printed. Tensile testing of the 3D printed ABS specimens showed that the printing direction made the strongest specimen at an ultimate tensile strength of 22 MPa while at printing direction it showed 12 MPa. No influence on the modulus of elasticity was noticed. The experimental results are presented in the manuscript.


2020 ◽  
Vol 858 ◽  
pp. 84-88
Author(s):  
Koshiro Mizobe ◽  
Takahiro Matsueda ◽  
Katsuyuki Kida

Additive manufacturing (AM) methods have become popular but the fracture mechanism of products made by AM is not well understood. In particular, the fracture of parts made by 3D printing needs more investigation. We have already investigated the effect of the lamination direction on the fractures in bearing specimens. In this study, we made some specimens by using a 3D printing method and performed some tensile tests. We investigated the effect of the lamination direction on the Young’s modulus of the specimens and tried to detect inner defect initiation using an acoustic emission (AE) sensor.


Author(s):  
Jason Nagy ◽  
Xiao Huang

In this research, a micro-plasma system was investigated for its capability in additive manufacturing (AM). Micro-plasma AM system has the advantage of lower cost and higher deposition rate over laser based AM systems, and generates leaner and cleaner weld deposit than other arc based AM systems. However, the micro-plasma system is complex and involves a large number of process variables. In this study, the feasibility of using a micro-plasma system for additive manufacturing was assessed based on surface features, mechanical properties and microstructure. In addition, two arc and wire feed modes were examined to understand the effects of these two variables. Each was used to produce IN 718 superalloy samples for macro- and microstructure evaluation, hardness, wear, and tensile tests along both long and transverse directions. Preliminary results showed that crack free samples, measured up to 100 mm × 40 mm, can be generated without measurable distortion. Some surface discoloration was observed, ranging from light straw to a purple tint. After heat treatment, the hardness of the samples varies from 403 to 440 HV, with the transverse surface showing slightly lower hardness values. Pin-on-disk wear test yielded consistent wear volume for three sets of the samples produced using different process parameters; however, samples produced with no modifications to the current and wire feed mode showed marginally higher wear rate. Microstructural analysis with SEM and EDS revealed presence of small pinholes, measured from submicron up to 22 μm in diameter, and no indication of any cracks or boundary layers between passes. SEM analysis revealed the presence of high contrast Nb/Mo rich carbides along with γ″-Ni3Nb in the γ matrix. Finally, tensile test was carried out to understand the anisotropic behavior; the results showed that transverse direction had lower tensile strength and ductility. Samples produced with pulsed current and wire feed mode had lower yield/tensile strength but higher ductility than that without current and wire feed mode modification.


Sign in / Sign up

Export Citation Format

Share Document