Optimum Topology of Embossed Ribs in Stamped Plates

Author(s):  
Ciro A. Soto ◽  
Ren Jye Yang

Abstract This paper presents a methodology to compute the optimum topology of embossed ribs (also known as beads) in stamped plates. The pattern and orientation of embossed ribs are determined using topology optimization techniques as introduced by Bendsøe and Kikuchi (1988). The particular characteristics of embossed ribs in membrane and pure bending deformations are considered in the analysis model to closely simulate their structural behavior. What makes this approach unique is that the optimum solution is made of two materials, one with orthotopic properties which is optimally distributed within a second material with isotropic properties that model the non-ribbed plate. An example of a vehicle fuel tank is included to illustrate the potential use of this methodology.

2021 ◽  
Vol 26 (2) ◽  
pp. 34
Author(s):  
Isaac Gibert Martínez ◽  
Frederico Afonso ◽  
Simão Rodrigues ◽  
Fernando Lau

The objective of this work is to study the coupling of two efficient optimization techniques, Aerodynamic Shape Optimization (ASO) and Topology Optimization (TO), in 2D airfoils. To achieve such goal two open-source codes, SU2 and Calculix, are employed for ASO and TO, respectively, using the Sequential Least SQuares Programming (SLSQP) and the Bi-directional Evolutionary Structural Optimization (BESO) algorithms; the latter is well-known for allowing the addition of material in the TO which constitutes, as far as our knowledge, a novelty for this kind of application. These codes are linked by means of a script capable of reading the geometry and pressure distribution obtained from the ASO and defining the boundary conditions to be applied in the TO. The Free-Form Deformation technique is chosen for the definition of the design variables to be used in the ASO, while the densities of the inner elements are defined as design variables of the TO. As a test case, a widely used benchmark transonic airfoil, the RAE2822, is chosen here with an internal geometric constraint to simulate the wing-box of a transonic wing. First, the two optimization procedures are tested separately to gain insight and then are run in a sequential way for two test cases with available experimental data: (i) Mach 0.729 at α=2.31°; and (ii) Mach 0.730 at α=2.79°. In the ASO problem, the lift is fixed and the drag is minimized; while in the TO problem, compliance minimization is set as the objective for a prescribed volume fraction. Improvements in both aerodynamic and structural performance are found, as expected: the ASO reduced the total pressure on the airfoil surface in order to minimize drag, which resulted in lower stress values experienced by the structure.


2013 ◽  
Vol 785-786 ◽  
pp. 1258-1261
Author(s):  
In Pyo Cha ◽  
Hee Jae Shin ◽  
Neung Gu Lee ◽  
Lee Ku Kwac ◽  
Hong Gun Kim

Topology optimization and shape optimization of structural optimization techniques are applied to transport skate the lightweight. Skate properties by varying the design variables and minimize the maximum stress and strain in the normal operation, while reducing the volume of the objective function of optimal design and Skate the static strength of the constraints that should not degrade compared to the performance of the initial model. The skates were used in this study consists of the main frame, sub frame, roll, pin main frame only structural analysis and optimal design was performed using the finite element method. Simplified initial model set design area and it compared to SM45C, AA7075, CFRP, GFRP was using the topology optimization. Strength does not degrade compared to the initial model, decreased volume while minimizing the stress and strain results, the optimum design was achieved efficient lightweight.


2011 ◽  
Vol 267 ◽  
pp. 297-301
Author(s):  
Yong Wang ◽  
Guo Niu Zhu ◽  
Bo Yu Sun

The paper is concerned with topology optimization in the mechanical design process. The disadvantage of current process of mechanical design is discussed and a new design process based on structural topology optimization is presented. The design process with structural topology optimization in mechanical design is discussed by the example of the frame of a bender. Static analysis is made to the original model first according to the whole structure and working characteristic of the machine, the stress and deformation distribution are obtained and then topology optimization is carried out. On the basis of topology optimization, the layout of the initial design proposal is obtained and the weight of the frame is substantially reduced while the performance enhanced. The application of the method demonstrates that through innovative utilization of the topology optimization techniques, the conceptual proposals can be obtained and the overall mechanical design process can be improved substantially in a cost effective manner.


Author(s):  
Manas Metar

Abstract: Weight reduction techniques have been practiced by automobile manufacturers for the purpose of long range, less fuel consumption and achieving higher speeds. Due to the numerous set objectives that must be met, especially with respect to of car safety, automotive chassis design for vehicle weight reduction is a difficult task. In passenger classed vehicles using a monocoque chassis for vehicle construction has been a great solution for reducing overall wight of the vehicle body yet the structure is more stiffened and sturdier. However, some parts such as A-pillar, B-pillar, roof structure, floor pan can be further optimized to reduce more weight without affecting the strength needed for respective purposes. In this paper, the main focus is on reducing weight of the B-pillar. The B-pillar of a passenger car has been optimized using topology optimization and optimum weight reduction has been done. The modelling and simulation are done using SOLIDWORKS 3D software. The B-pillar in this study has been subjected to a static load of 140 KN. Further by providing goals and constraints the optimization was caried out. The results of Finite Element Analysis (FEA) of the original model are explained. The Topology Optimization resulted in reducing 53% of the original weight of the B-pillar. Keywords: Structural optimization techniques, weight reduction techniques, weight reduction technologies, need for weight reduction, Topology optimization, B-pillar design, structural optimization of B-pillar, Topology optimization of B-pillar.


Author(s):  
Nadim Diab

Swarm intelligence optimization techniques are widely used in topology optimization of compliant mechanisms. The Ant Colony Optimization has been implemented in various forms to account for material density distribution inside a design domain. In this paper, the Ant Colony Optimization technique is applied in a unique manner to make it feasible to optimize for the beam elements’ cross-section and material density simultaneously. The optimum material distribution algorithm is governed by two various techniques. The first technique treats the material density as an independent design variable while the second technique correlates the material density with the pheromone intensity level. Both algorithms are tested for a micro displacement amplifier and the resulting optimized topologies are benchmarked against reported literature. The proposed techniques culminated in high performance and effective designs that surpass those presented in previous work.


Author(s):  
Yu Li ◽  
Yi Min Xie

Topology optimization techniques based on finite element analysis have been widely used in many fields, but most of the research and applications are based on single-material structures. Extended from the bi-directional evolutionary structural optimization (BESO) method, a new topology optimization technique for 3D structures made of multiple materials is presented in this paper. According to the sum of each element's principal stresses in the design domain, a material more suitable for this element would be assigned. Numerical examples of a steel- concrete cantilever, two different bridges and four floor systems are provided to demonstrate the effectiveness and practical value of the proposed method for the conceptual design of composite structures made of steel and concrete.


Author(s):  
Jack Lehrecke ◽  
Juan Pablo Osman-Letelier ◽  
Mike Schlaich

The implementation of post-tensioned elements in concrete structures offers a multitude of benefits with regards to the overall structural behavior, with the efficacy of the applied tendons depending heavily on their geometry. However, the derivation of an optimal tendon geometry for a given structure is nontrivial, requiring engineering experience or the use of complex and often computationally demanding methodologies, e.g.the use of topology optimization strategies. This paper aims to investigate the possibility for optimizing tendon geometries using a path integral based objective function developed at the TU Berlin. For this purpose, the mathematical background is first presented to illustrate the proposed concept. Beginning with a tendon geometry optimization of a simply supported beam and progressing to more complex systems, a generalized approach for doubly curved spatial structures will be presented.


Sign in / Sign up

Export Citation Format

Share Document