Single Flank Test, Structure-Borne Noise Analysis and Digital Imaging of Tooth Contact

Author(s):  
Hermann J. Stadtfeld

Abstract The innovative new measuring and testing machine is not only a high-precision measurement for the laboratory, but also a 100% inspection tool for the production environment or for quality control. It is incorrect to currently assume that a production tester can be less precise and should be without advanced measurement and analysis features. Today’s quality standards demand a full-featured production test machine, which brings lab-testing abilities to the shop floor. The laboratory investigation can establish the combination of criteria to be fulfilled by an individual gear set in order to pass acceptance in the vehicle. This can include requirements related to tooth contact, structure-borne noise emission or single flank variations. It is not necessarily evident, beforehand, if criteria for all three test types can be established or are even mandatory. It is quite possible, for instance, that the analysis of vibrations a gear set transmits to the spindle housing of the testing machine does not reveal a correlation with the noise in the vehicle. The noise levels of a “quiet” gear set may well be higher on the testing machine than those of a “loud” gear. In this case, the single flank test or a combination of single flank test and structure-borne noise analysis will provide a criterion for testing. All options and features described are equally important in both laboratory and production use. Specific software and electronic hardware components for single flank testing and structure-borne noise analyses are and commanded by the part program executed in the machine controller. The use of the video equipment on the tester can recognize and evaluate the contact position.

2018 ◽  
Vol 51 (1) ◽  
pp. 64-74 ◽  
Author(s):  
Akar Dogan ◽  
Yusuf Arman

In this study, the effects of temperature and impactor nose diameter on the impact behavior of woven glass-reinforced polyamide 6 (PA6) and polypropylene (PP) thermoplastic composites were investigated experimentally. Impact energies are chosen as 10, 30, 50, 70, 90, 110, 130, and 170 J. The thickness of composite materials is 4 mm. Impact tests were performed using a drop weight impact testing machine, CEAST-Fractovis Plus, and the load capacity of test machine is 22 kN. Hemispherical impactor nose diameter of 12, 7, and 20 mm were used as an impactor. The tests are conducted at room temperature (20°C and 75°C). As a result, the PP composites of the same thickness absorbed more energy than PA6 composites. The amount of absorbed energy of PP and PA6 composites decreased with temperature.


2021 ◽  
Vol 877 (1) ◽  
pp. 012009
Author(s):  
Mohammed Qasim Kareem ◽  
Vladimir Dorofeyev

Abstract It is possible to expand the applications ranges of powder material products by enhancing the performance properties of these products in addition to their manufacturability and reliability together, it’s possible by materials structures modification. In this paper, the effect of fullerene (C60) additives to iron-based powder material has been studied. All samples produced by Hot-Forging (HF) powder materials technology. Green and HF density of the obtained samples calculated by volume / weight and Archimede’s principle, respectively. The effect of technological parameters on the microstructure of carbon steels’ samples was done by an ALTAMI MET-1M metallographic microscope. Tensile test executed by using of a universal testing machine UMM –5 and the microhardness (HV10) was measured by REICHERT hardness test machine. The results showed that the HF C60 steels’ samples had higher density and strength of 0.81 and 25%, respectively, with a good plasticity in comparison with graphite steels’ samples.


2019 ◽  
Vol 287 ◽  
pp. 01008
Author(s):  
Hrayr Darbinyan

A novel approach of task based conceptual design(TBCD) has been successfully used as direct guider and efficient developer of unique mechanical structures for many cases of mechanical design. Nearly a decade long efforts of elaboration of efficient every day usage formats for this method have been ended in convenient design pages suitable and applicable for revealing, describing, visualizing and managing the data necessary for organizing the design process from task definition to solutions satisfying original design tasks. The aim of current study is to show steps of a solution generation within frames of a single design cycle and extend this action over consecutive design cycles. Those steps are described from standpoint of general concept design method starting from key model and finished with final aggregation matrice as ultimate step of a single design cycle. Unified mathematical expressions are used for introduction and description of all worked out and developed components of conceptual design. The paper is arranged in a way to show gradual steps of conceptual design(CD) of a power transmission system – a pipe wrench life test machine.


2011 ◽  
Vol 2011 ◽  
pp. 1-7 ◽  
Author(s):  
G. Nallakumarasamy ◽  
PSS. Srinivasan ◽  
K. Venkatesh Raja ◽  
R. Malayalamurthi

Computer-aided process planning (CAPP) is an important interface between computer-aided design (CAD) and computer-aided manufacturing (CAM) in computer-integrated manufacturing environment. A problem in traditional CAPP system is that the multiple planning tasks are treated in a linear approach. This leads to an overconstrained overall solution space, and the final solution is normally far from optimal or even nonfeasible. A single sequence of operations may not be the best for all the situations in a changing production environment with multiple objectives such as minimizing number of setups, maximizing machine utilization, and minimizing number of tool changes. In general, the problem has combinatorial characteristics and complex precedence relations, which makes the problem more difficult to solve. The main contribution of this work is to develop an intelligent CAPP system for shop-floor use that can be used by an average operator and to produce globally optimized results. In this paper, the feasible sequences of operations are generated based on the precedence cost matrix (PCM) and reward-penalty matrix (REPMAX) using superhybrid genetic algorithms-simulated annealing technique (S-GENSAT), a hybrid metaheuristic. Also, solution space reduction methodology based on PCM and REPMAX upgrades the procedure to superhybridization. In this work, a number of benchmark case studies are considered to demonstrate the feasibility and robustness of the proposed super-hybrid algorithm. This algorithm performs well on all the test problems, exceeding or matching the solution quality of the results reported in the literature. The main contribution of this work focuses on reducing the optimal cost with a lesser computational time along with generation of more alternate optimal feasible sequences. Also, the proposed S-GENSAT integrates solution space reduction, hybridization, trapping out of local minima, robustness, and convergence; it consistently outperformed both a conventional genetic algorithm and a conventional simulated annealing algorithm.


2012 ◽  
Vol 714 ◽  
pp. 245-253 ◽  
Author(s):  
Aneta Fraczek-Szczypta ◽  
Ewa Stodolak-Zych ◽  
Szymon Jurdziak ◽  
Marta Blazewicz

Among the many applications of polylactide (PLA) in medicine, one of the most famous is porous scaffold for bone and cartilage regeneration. A new direction in the development of biodegradable polymer scaffolds is their modification using different types of nanoadditives. One type of these nanomaterials could be carbon nanotubes (CNT), which could influence the mechanical, electrical, physicochemical and biological properties of polymer matrices. Porous nanocomposite scaffolds were prepared using different techniques, such as salt leaching and a combination of salt leaching and gas foaming techniques. The bioactivity of MWCNTs was determined through their incubation in simulated body fluid (SBF) and verified using scanning electron microscopy (SEM). The best concentration of nanoadditives in the polymer matrices was evaluated on the basis of mechanical and in vitro tests of nanocomposite films using a universal testing machine (Zwick) and osteoblast-like human cells (MG63). The morphology, porosity and mechanical properties of the porous scaffold before and after modification with MWCNTs were evaluated using SEM, hydrostatic weighing and a universal test machine.


2019 ◽  
Author(s):  
Irzal ◽  
syahrul

by using connection type I. To get a good welding result is determined several factors, including the properties of material welding, connection type, welding position, and electrode used. In a welding project, there is still a welder that only uses I in the weld IWF 400 connecting iron while the thickness of the material 13 mm. This study aims to determine the effect of the use of campuh against the strength of weld joint connection using LB 52U 2.6 mm Electrode and RD 7018 3.2 mm electrode with AC Flow. In this study using experimental method begins with making specimens. With the collection of 7 specimens consisting of 3 specimens with welding treatment using Camp V, 3 specimens with welding treatment using Camp I and 1 IWF 400 specimens without welding treatment. From the results of research conducted on specimens by making and testing specimens with a tensile test machine Hydraullic Universal Material Testing Machine then obtained on the specimen without welding average value of Maximum (max) 41,28 kgf/mm². In welded specimens with a connection of the V values the average value of the Maximum (max) 39,82 kgf/mm². On a welded specimen with a maximum I knot connection (max) 38,32 kgf/mm².The results of this study indicate the results of iron welding IWF 400 using camp V greater value voltage 39.82 kgf / mm². From the maximum voltage value obtained from this study it is recommended that iron welding IWF 400 uses V.


Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Yanbao Liu ◽  
Haitao Sun ◽  
Bo Wang ◽  
Linchao Dai ◽  
Jie Cao

Gas outburst is an important issue in deep coal mining. At present, the gas-rock coupling change mechanism and intensity prediction of gas outburst are not clear. The research of gas outburst simulation experiment is particularly important. The State Key Laboratory of Gas Disaster Monitoring and Emergency Technology of China independently developed a large-scale coal and gas outburst physical simulation test system. However, the influence of the design parameters of the testing machine on the stability and accuracy of the simulation experiment is unclear. The article analyzes the energy conversion in the process of gas outburst through experimental simulation phenomena and results. The experimental simulation results show that the energy released by the CO2 gas in similar materials is the most important energy source. The cracks of similar materials increase the nominal volume of similar materials, and the deformation energy stored in similar materials slightly increases. The experimental simulation results are consistent with the actual situation on site. Combined with CAE simulation analysis, the displacement and pressure of the indenter of the experimental machine remained basically unchanged during the experiment, and the system did not produce resonance. Comprehensive analysis shows that the design of the test machine meets the simulation requirements.


2018 ◽  
Vol 26 (2) ◽  
pp. 329-350 ◽  
Author(s):  
Faik Tugut ◽  
Mehmet Turgut ◽  
Dursun Saraydin

Abstract The study aimed to evaluate the effects of adding different concentrations of 2 hydroxyethyl methacrylate (HEMA), 2-hydroxyethyl acrylate (HEA), ethyl methacrylate (EA) and isobutyl methacrylate (IBMA) monomers on the structural, thermal and mechanical properties of a fiber reinforced heat-polymerized acrylic resin. For each test, 126 acrylic resin specimens were fabricated and divided into 6 groups with 7 specimens each. One group was the control group, the other one is a fiber reinforced group and others were the test groups, which were formed according to the different concentrations of monomers. 6 mm length, and the weight ratio of 3% short glass fibers are added to acrylic powder polymerized by heating. The 2%, 5%, 10%, at 20 % ratios of different comonomers added to a monomer of MMA are composed of copolymer structures. Flexural strength was assessed with a three-point bending test using a universal testing machine. Impact strength testing was conducted using an impact test machine by the Charpy method. The analysis of the connection between acrylic resin and fiber by SEM and structural changes in the acrylic resin was investigated by FTIR spectroscopy. Data analyses using analysis of Kruskal-Wallis and Mann-Whitney U tests (α=0.05) significant difference tests showed that adding 2%, 5% HEMA and IBMA monomers significantly increased the flexural and impact strength compared to the control, only fiber and others group (P< 0.05). It is observed that the process of adding low concentration of HEMA and IBMA monomers improved certain mechanical properties of fiber reinforced with polymethylmethacrylate.


Vehicles ◽  
2020 ◽  
Vol 2 (3) ◽  
pp. 559-573
Author(s):  
Meng Du ◽  
Pengfei Sun ◽  
Shuiting Zhou ◽  
Hongwu Huang ◽  
Jie Zhu

In order to improve the test conditions of the tire uniformity test and the effect of the speed and tire pressure on the uniformity parameters, the uniformity test of the tire under different speeds and tire pressure was carried out by a high-speed uniformity test machine, and the experimental data were analyzed and fitted by the regression analysis method. This paper introduces the definition of uniformity and the uniformity parameters of automotive tires; the working principle of a high-speed uniformity testing machine is briefly described, a mathematical model of the uniformity testing machine is established, and the signal acquisition process of the tire uniformity parameters and the calculation method of the uniformity parameters are described. The test result indicates: As the speed increases, the radial force fluctuation, lateral force fluctuation, tangential force fluctuation, and turning torque fluctuation of the tire increase, and the positive torque fluctuation first increases and then decreases; with the increase of tire pressure, the radial force fluctuation and the tangential force fluctuation of the tire increase, and the lateral force fluctuation, the turning torque fluctuation, and the returning moment fluctuation are all reduced. Compared to the low speed uniformity test, the high speed uniformity test can better reflect the uniformity of the tire, reducing the speed of the vehicle can reduce the radial runout and lateral sway of the tire; increasing the tire pressure can reduce the left and right swing of the vehicle.


2021 ◽  
Vol 263 (1) ◽  
pp. 5038-5046
Author(s):  
Mark Storm

For Inter-noise 2018, the author submitted a paper proposing techniques to derive reasonable preliminary estimates of building project stationary noise emission levels from sparse but available data that may seem unrelated to noise or vibration such as gross square footage (GSF), expected occupancy, and land use or function. Results from these predictions would be used to support or refine established buffer distances between exposed outdoor heating, ventilating, and air-conditioning (HVAC) system noise sources and nearby noise-sensitive receptors, helping planners tasked with ambitious infill or growth goals better fit building projects into complicated campus development puzzles. This paper provides supplemental guidance by linking the same preliminary building project GSF, occupancy, and function information to estimates of cooling load (expressed as refrigeration tonnage) and thus an additional HVAC consideration not discussed in the author's previous study. When such refrigeration relies upon air-cooled condensers installed outdoors on building rooftops or at grade, substantial noise sources are introduced to the environment. Thus, this new study shares data and methodology to help expand the value and utility of the previous work and potentially provide more comprehensive building HVAC noise estimates for use by building developers and planners.


Sign in / Sign up

Export Citation Format

Share Document