scholarly journals Passivity-Based Distributed Acquisition and Station-Keeping Control of a Satellite Constellation in Areostationary Orbit

Author(s):  
Emmanuel Sin ◽  
He Yin ◽  
Murat Arcak

Abstract We present a distributed control law to assemble a cluster of satellites into an equally-spaced, planar constellation in a desired circular orbit about a planet. We assume each satellite only uses local information, transmitted through communication links with neighboring satellites. The same control law is used to maintain relative angular positions in the presence of disturbance forces. The stability of the constellation in the desired orbit is proved using a compositional approach. We first show the existence and uniqueness of an equilibrium of the interconnected system. We then certify each satellite and communication link is equilibrium-independent passive with respective storage functions. By leveraging the skew symmetric coupling structure of the constellation and the equilibrium-independent passivity property of each subsystem, we show that the equilibrium of the interconnected system is stable with a Lyapunov function composed of the individual subsystem storage functions. We further prove that the angular velocity of each satellite converges to the desired value necessary to maintain circular, areostationary orbit. Finally, we present simulation results to demonstrate the efficacy of the proposed control law in acquisition and station-keeping of an equally-spaced satellite constellation in areostationary orbit despite the presence of unmodeled disturbance forces.

1989 ◽  
Vol 1 (1) ◽  
pp. 58-67 ◽  
Author(s):  
John L. Wyatt ◽  
David L. Standley

In the analog VLSI implementation of neural systems, it is sometimes convenient to build lateral inhibition networks by using a locally connected on-chip resistive grid to interconnect active elements. A serious problem of unwanted spontaneous oscillation often arises with these circuits and renders them unusable in practice. This paper reports on criteria that guarantee these and certain other systems will be stable, even though the values of designed elements in the resistive grid may be imprecise and the location and values of parasitic elements may be unknown. The method is based on a rigorous, somewhat novel mathematical analysis using Tellegen's theorem (Penfield et al. 1970) from electrical circuits and the idea of a Popov multiplier (Vidyasagar 1978; Desoer and Vidya sagar 1975) from control theory. The criteria are local in that no overall analysis of the interconnected system is required for their use, empirical in that they involve only measurable frequency response data on the individual cells, and robust in that they are insensitive to network topology and to unmodelled parasitic resistances and capacitances in the interconnect network. Certain results are robust in the additional sense that specified nonlinear elements in the grid do not affect the stability criteria. The results are designed to be applicable, with further development, to complex and incompletely modeled living neural systems.


2021 ◽  
Vol 2021 ◽  
pp. 1-21
Author(s):  
Muhammad Asim Saleem ◽  
Zhou Shijie ◽  
Muhammad Umer Sarwar ◽  
Tanveer Ahmad ◽  
Amarah Maqbool ◽  
...  

VANET is the spontaneous evolving creation of a wireless network, and clustering in these networks is a challenging task due to rapidly changing topology and frequent disconnection in networks. The cluster head (CH) stability plays a prominent role in robustness and scalability in the network. The stable CH ensures minimum intra- and intercluster communication, thereby reducing the overhead. These challenges lead the authors to search for a CH selection method based on a weighted amalgamation of four metrics: befit factor, community neighborhood, eccentricity, and trust. The stability of CH depends on the vehicle’s speed, distance, velocity, and change in acceleration. These all are included in the befit factor. Also, the accurate location of the vehicle in changing the model is very vital. Thus, the predicted location with the Kalman filter’s help is used to evaluate CH stability. The results have shown better performance than the existing state of the art for the befit factor. The change in dynamics and frequent disconnection in communication links due to the vehicle’s high speed are inevitable. To comprehend this problem, a graphing approach is used to evaluate the eccentricity and the community neighborhood. The link reliability is calculated using the eigengap heuristic. The last metric is trust; this is one of the concepts that has not been included in the weighted approach to date as per the literature. An adaptive spectrum sensing is designed for evaluating the trust values specifically for the primary users. A deep recurrent learning network, commonly known as long short-term memory (LSTM), is trained for the probability of detection with various signals and noise conditions. The false rate has drastically reduced with the usage of LSTM. The proposed scheme is tested on the real map of Chengdu, southwestern China’s Sichuan province, with different vehicular mobilities. The comparative study with the individual and weighted metric has shown significant improvement in the cluster head stability during high vehicular density. Also, there is a considerable increase in network performance in energy, packet delay, packet delay ratio, and throughput.


Author(s):  
T. Dierks ◽  
B. T. Thumati ◽  
S. Jagannathan

In this chapter, a fault tolerant kinematic/torque control law is developed using backstepping for leader-follower based formation control in order to accommodate the dynamics of the robots and the formation in contrast with kinematic-based formation controllers. First, nominal control laws are derived for the leader and follower robots under the assumption of normal operation (no faults), and the stability of the individual robots and the formation is verified using Lyapunov methods. Subsequently, in the presence of state faults such as actuator fault, flat-tire etc., which could be incipient or abrupt in nature, an online fault detection and accommodation (FDA) scheme is derived to mitigate the effects of a fault by modifying the nominal controller. In other words, an additional term is introduced to the existing control law to minimize the effects of the fault, and this additional term is a function of the unknown fault dynamics which are recovered using the online learning capabilities of a neural network. Further, mathematical stability results are derived using Lyapunov theory, and both the FDA scheme and the formation errors are guaranteed to render asymptotic stability in the presence of faults. Numerical results are provided to verify the theoretical conjectures.


Methodology ◽  
2006 ◽  
Vol 2 (4) ◽  
pp. 142-148 ◽  
Author(s):  
Pere J. Ferrando

In the IRT person-fluctuation model, the individual trait levels fluctuate within a single test administration whereas the items have fixed locations. This article studies the relations between the person and item parameters of this model and two central properties of item and test scores: temporal stability and external validity. For temporal stability, formulas are derived for predicting and interpreting item response changes in a test-retest situation on the basis of the individual fluctuations. As for validity, formulas are derived for obtaining disattenuated estimates and for predicting changes in validity in groups with different levels of fluctuation. These latter formulas are related to previous research in the person-fit domain. The results obtained and the relations discussed are illustrated with an empirical example.


Energies ◽  
2018 ◽  
Vol 11 (9) ◽  
pp. 2262 ◽  
Author(s):  
Hua Han ◽  
Chao Luo ◽  
Xiaochao Hou ◽  
Mei Su ◽  
Wenbin Yuan ◽  
...  

For an AC-stacked photovoltaic (PV) inverter system with N cascaded inverters, existing control methods require at least N communication links to acquire the grid synchronization signal. In this paper, a novel decentralized control is proposed. For N inverters, only one inverter nearest the point of common coupling (PCC) needs a communication link to acquire the grid voltage phase and all other N − 1 inverters use only local measured information to achieved fully decentralized local control. Specifically, one inverter with a communication link utilizes the grid voltage phase and adopts current control mode to achieve a required power factor (PF). All other inverters need only local information without communication links and adopt voltage control mode to achieve maximum power point tracking (MPPT) and self-synchronization with grid voltage. Compared with existing methods, the communication link and complexity is greatly reduced, thus improved reliability and reduced communication costs are achieved. The effectiveness of the proposed control is verified by simulation tests.


2020 ◽  
Vol 26 (3) ◽  
pp. 223-244
Author(s):  
W. John Thrasher ◽  
Michael Mascagni

AbstractIt has been shown that when using a Monte Carlo algorithm to estimate the electrostatic free energy of a biomolecule in a solution, individual random walks can become entrapped in the geometry. We examine a proposed solution, using a sharp restart during the Walk-on-Subdomains step, in more detail. We show that the point at which this solution introduces significant bias is related to properties intrinsic to the molecule being examined. We also examine two potential methods of generating a sharp restart point and show that they both cause no significant bias in the examined molecules and increase the stability of the run times of the individual walks.


2020 ◽  
Vol 96 (2) ◽  
pp. 419-437
Author(s):  
Xiangfeng Yang

Abstract Ample evidence exists that China was caught off guard by the Trump administration's onslaught of punishing acts—the trade war being a prime, but far from the only, example. This article, in addition to contextualizing their earlier optimism about the relations with the United States under President Trump, examines why Chinese leaders and analysts were surprised by the turn of events. It argues that three main factors contributed to the lapse of judgment. First, Chinese officials and analysts grossly misunderstood Donald Trump the individual. By overemphasizing his pragmatism while downplaying his unpredictability, they ended up underprepared for the policies he unleashed. Second, some ingrained Chinese beliefs, manifested in the analogies of the pendulum swing and the ‘bickering couple’, as well as the narrative of the ‘ballast’, lulled officials and scholars into undue optimism about the stability of the broader relationship. Third, analytical and methodological problems as well as political considerations prevented them from fully grasping the strategic shift against China in the US.


2003 ◽  
Vol 69 (7) ◽  
pp. 4012-4018 ◽  
Author(s):  
Ariel Maoz ◽  
Ralf Mayr ◽  
Siegfried Scherer

ABSTRACT The temporal stability and diversity of bacterial species composition as well as the antilisterial potential of two different, complex, and undefined microbial consortia from red-smear soft cheeses were investigated. Samples were collected twice, at 6-month intervals, from each of two food producers, and a total of 400 bacterial isolates were identified by Fourier-transform infrared spectroscopy and 16S ribosomal DNA sequence analysis. Coryneform bacteria represented the majority of the isolates, with certain species being predominant. In addition, Marinolactobacillus psychrotolerans, Halomonas venusta, Halomonas variabilis, Halomonas sp. (106 to 107 CFU per g of smear), and an unknown, gram-positive bacterium (107 to 108 CFU per g of smear) are described for the first time in such a consortium. The species composition of one consortium was quite stable over 6 months, but the other consortium revealed less diversity of coryneform species as well as less stability. While the first consortium had a stable, extraordinarily high antilisterial potential in situ, the antilisterial activity of the second consortium was lower and decreased with time. The cause for the antilisterial activity of the two consortia remained unknown but is not due to the secretion of soluble, inhibitory substances by the individual components of the consortium. Our data indicate that the stability over time and a potential antilisterial activity are individual characteristics of the ripening consortia which can be monitored and used for safe food production without artificial preservatives.


Author(s):  
JEN-YANG CHEN

In this paper, a fuzzy sliding mode controller (FSMC), which is synthesized by a collection of linguistic control rules whose membership functions of THEN-part is adapted, is proposed. Both the membership functions of IF-part and THEN-part are arranged symmetrically and distributed equally in the individual universe of discourse. In particular, the membership functions of the THEN-part can be adapted via one parameter adaptation to meet the required system specification. The proposed direct adaptive FSMC can be synthesized through the following stages. First, the control rules are constructed according to the concepts of SMC, and the fuzzy sets whose membership functions are symmetrically covered in state space. Then, the derived adaptive law is used to adjust the membership functions of the THEN-part. The FSMC is employed to approximate the equivalent control of SMC without knowing the mathematical model of the controlled system. Third, a hitting control is developed to guarantee the stability of the control system. Finally, we apply this FSMC to control a nonlinear inverted pendulum system for confirming the validity of the proposed approach.


2018 ◽  
Vol 8 (8) ◽  
pp. 1257 ◽  
Author(s):  
Tianqi Yang ◽  
Weimin Zhang ◽  
Xuechao Chen ◽  
Zhangguo Yu ◽  
Libo Meng ◽  
...  

The most important feature of this paper is to transform the complex motion of robot turning into a simple translational motion, thus simplifying the dynamic model. Compared with the method that generates a center of mass (COM) trajectory directly by the inverted pendulum model, this method is more precise. The non-inertial reference is introduced in the turning walk. This method can translate the turning walk into a straight-line walk when the inertial forces act on the robot. The dynamics of the robot model, called linear inverted pendulum (LIP), are changed and improved dynamics are derived to make them apply to the turning walk model. Then, we expend the new LIP model and control the zero moment point (ZMP) to guarantee the stability of the unstable parts of this model in order to generate a stable COM trajectory. We present simulation results for the improved LIP dynamics and verify the stability of the robot turning.


Sign in / Sign up

Export Citation Format

Share Document