Resonance in Flow-Induced Cable Vibration: Analytical Prediction and Numerical Simulation

Author(s):  
M. K. Kwan ◽  
R. R. Hwang ◽  
C. T. Hsu

Flow-induced resonance for a two-end hinged cable under uniform incoming flows is investigated using analytical prediction and numerical simulation. In this study, the fundamental mode is analyzed for simplicity. First, based on a series of physical judgments, the approximate cable trajectory is predicted — the whole cable vibrates as a standing wave, with its locus on the transverse cross-section having a convex “8”-like shape. To find the exact path, however, experiment or numerical simulation is necessary. Hence, a bronze cable at aspect ratio (length/diameter) of 100 under water flows at Reynolds number (based on cable diameter and incoming velocity) of 200 is computed. The result confirms our predictions. Moreover, it is found that the amplitude of the cross-flow displacement is much higher than that of the streamwise displacement, despite the higher streamwise fluid force. As a consequence, energy transfer from fluid to solid is maximized in the cross-flow direction.

Author(s):  
Gustavo R. S. Assi ◽  
Peter W. Bearman ◽  
Julio R. Meneghini

This paper investigates the wake-induced vibration (WIV) of the downstream cylinder of a pair as far as its dependency of Reynolds number is concerned. Experiments have been conducted in a circulating water channel with a rigid cylinder elastically mounted to respond with oscillations in the cross-flow direction. Various sets of coil springs were employed to vary the reduced velocity of the system maintaining constant the Reynolds number. Experiments performed with a cylinder mounted without springs provided the idealised case of reduced velocity equal to infinity. We conclude that the amplitude of the WIV response has a strong dependency on Reynolds number even within the small range between Re = 2 × 103 and 2.5 × 104. If the reduced velocity parameter is isolated — by making it equal to infinity, for instance — the Re-dependency still dominates over the behaviour of the response.


2021 ◽  
Vol 409 ◽  
pp. 158-178
Author(s):  
Abdelkader Feddal ◽  
Abbes Azzi ◽  
Ahmed Zineddine Dellil

This paper deals with studying numerically two circular turbulent jets impinging on a flat surface with a low velocity cross flow by using ANSYS CFX 16.2, with the aim of proving the effect ofReynolds number on the flow demeanor in a vertical circular free turbulent jet with cross flow. Five turbulence models of the RANS (Reynolds Averaged Navier–Stokes) approach were tested and the k -ω SST model was chosen to validate CFD results with the experimental data. Average velocity profiles, velocity and turbulent kinetic energy contours and streamlines are presented for four case configurations. In the first three cases, the following parameters have been varied: Reynolds number at the level of the two jets ( ), wind velocity at the level of the cross-flow ( ), and the distance between the two jets (S = 45mm, 90mm and 135mm). In the last case, a new configuration of the phenomenon not yet studied so far was treated, where horizontal cross-flows were introduced from both sides in order to simulate gusts of wind disrupting a VSTOL aircraft which tries to operate close to the ground. This case was carried out for Reynolds number based on the crossflow of 4 104, 10 104 and 20 104 .The numerical results obtained show that the deflection of the jets is minimal when the Reynolds number at the level of the jets is greater than that of the cross-flow. The increase of Reynolds number at the level of the cross-flow reveals a significant deviation of the two jets with an intensity which always remains less for the second jet. As for the space parameter between the two jets, it turns out that the fact of further spacing the two jets makes the first jet even more vulnerable and leads to a greater deflection. Finally, the simulation of the wind gusts from the front and the back caused a zone of turbulence which resulted from a form of "interlacing" of the two jets under the effect of the transverse current imposed by the two sides.


Author(s):  
Murilo M. Cicolin ◽  
Gustavo R. S. Assi

Experiments have been carried out on models of rigid circular cylinders fitted with three different types of permeable meshes to investigate their effectiveness in the suppression of vortex-induced vibrations (VIV). Measurements of amplitude of vibration and drag force are presented for models with low mass and damping which are free to respond in the cross-flow direction. Results for two meshes made of ropes and cylindrical tubes are compared with the VIV response of a bare cylinder and that of a known suppressor called the “ventilated trousers” (VT). All three meshes achieved an average 50% reduction of the peak response when compared with that of the bare cylinder. The sparse mesh configuration presented a similar behaviour to the VT, while the dense mesh produced considerable VIV response for an indefinitely long range of reduced velocity. All the three meshes have increased drag when compared with that of the bare cylinder. Reynolds number ranged from 5,000 to 25,000 and reduced velocity was varied between 2 and 15.


Author(s):  
Abdalla Gomaa ◽  
Wael IA Aly ◽  
Ashraf Mimi Elsaid ◽  
Eldesuki I Eid

In the present study, the thermo-fluid characteristics of a spirally coiled finned tube in cross flow were experimentally investigated. This investigation covered different design parameters such as curvature ratio, air velocity, flow direction, fin pitch and flow rate of chilled water on performance characteristics of the spirally coiled finned tube. The purpose was to evaluate this kind of the spirally finned-tube cooling coils with particular reference to bare coiled tube. Six test specimens were designed and manufactured with curvature ratios of 0.027, 0.03, 0.04, tube pitches of 18, 20, 30 mm and fin pitches of (33, 22, 11 mm). Experiments were carried out in a pilot wind tunnel with air Reynolds number ranging from 35,500 to 245,000. Two types of chilled water flow directions entering the spiral coil were tested at Reynolds number ranging from 5700 to 25,300, the first was inward flow direction and the other was to outward flow direction. The results revealed that the inward flow direction has significant enhancement effect on the Nusselt number compared with outward flow direction by 37.0% for tube pitch of 18 mm and curvature ratio of 0.027. The decrease of fin pitch enhances the Nusselt number by 21.92% on expense of friction factor by 10.9%. In the case of spirally coiled bare tube, the decreasing of the curvature ratio increases air side Nusselt number by 33.69% on expense of friction factor by 18.36%. General correlations of Nusselt number and air friction factor for bare and finned spirally coiled tube were correlated based on reported experimental data.


Author(s):  
Susan B. Swithenbank ◽  
Carl Martin Larsen

Most empirical codes for prediction of vortex-induced vibrations (VIV) has so far been limited to cross-flow response. The reason for this is that cross-flow amplitudes are normally larger that in-line amplitudes. Additionally the in-line response is considered to be driven by the cross-flow vibrations. However since the in-line frequency is twice the cross-flow frequency, fatigue damage from in-line vibrations may become as important and even exceed the damage from cross-flow vibrations. A way to predict in-line vibrations is to apply traditional methods that are used for cross-flow VIV and establish an empirical relationship between the cross-flow and in-line response. Previous work suggests that the ratio between the in-line and cross-flow amplitudes depends on the cross-flow mode number, Baarhom et al. (2004), but the empirical basis for this hypothesis is not strong. The motivation for the present work has been to verify or modify this hypothesis by extensive analysis of observed response. The present analysis uses complex data from experiments with wide variations in the physical parameters of the system, including length-to-diameter ratios from 82 to 4236, tension dominated natural frequencies and bending stiffness dominated natural frequencies, sub-critical and critical Reynolds numbers, different damping coefficients, uniform and sheared flows, standing wave and traveling wave vibrations, mode numbers from 1–25th, and different mass ratios. The conclusion from this work is that the cross-flow mode number is not the important parameter, but whether the frequency of vibration in the cross-flow direction is dominated by bending stiffness of tension.


Author(s):  
Antoine Placzek ◽  
Jean-Franc¸ois Sigrist ◽  
Aziz Hamdouni

The numerical simulation of the flow past a circular cylinder forced to oscillate transversely to the incident stream is presented here for a fixed Reynolds number equal to 100. The 2D Navier-Stokes equations are solved with a classical Finite Volume Method with an industrial CFD code which has been coupled with a user subroutine to obtain an explicit staggered procedure providing the cylinder displacement. A preliminary work is conducted in order to check the computation of the wake characteristics for Reynolds numbers smaller than 150. The Strouhal frequency fS, the lift and drag coefficients CL and CD are thus controlled among other parameters. The simulations are then performed with forced oscillations f0 for different frequency rations F = f0/fS in [0.50–1.50] and an amplitude A varying between 0.25 and 1.25. The wake characteristics are analysed using the time series of the fluctuating aerodynamic coefficients and their FFT. The frequency content is then linked to the shape of the phase portrait and to the vortex shedding mode. By choosing interesting couples (A,F), different vortex shedding modes have been observed, which are similar to those of the Williamson-Roshko map.


2014 ◽  
Vol 721 ◽  
pp. 199-202
Author(s):  
Zhen Xiao Bi ◽  
Zhi Han Zhu

This paper presents the calculation of hydrodynamic characteristics of two side-by-side cylinders of different diameters in three dimensional incompressible uniform cross flow by using Large-eddy simulation method based on dynamical Smagorinsky-Lilly sub-grid scale model. Solution of the three dimensional N-S equations were obtained by the finite volume method. The numerical simulation focused on investigating the characteristic of the pressure distribution (drag and lift force), vorticity field and turbulence Re=. Results shows that, the asymmetry of the time –averaged velocity distribution in the flow direction behind the two cylinders is very obvious; the frequency of eddy shedding of the small cylinder is about twice of the large one. The turbulence of cylinders is more obvious.


2016 ◽  
Vol 693 ◽  
pp. 734-739 ◽  
Author(s):  
Li Jie Wang ◽  
Brad L. Kinsey ◽  
Sunal Parasiz

As components with proportional feature and tooling sizes are miniaturized, strain gradients through the cross-section increase. This causes strain gradient hardening as the density of geometrically necessary dislocations increases. This will lead to higher required forces in the process than expected. In this paper, an analytical model to predict the dislocation density increases, and thus strain gradient hardening, during microbending is presented. These results match previous research in terms of the feature size where modest and significant strain gradient hardening was observed.


2013 ◽  
Vol 368-370 ◽  
pp. 1379-1382
Author(s):  
Ying Jia ◽  
Li Zhang ◽  
Sheng Zhang

This paper carries out a numerical simulation of the atmospheric flow field around bridge. The variation law of airflow field around bridge is studied. Velocity and pressure distribution laws of flow field in horizontal plane and the cross-section are discussed, and influence range of flow field around bridge area is identified.


Sign in / Sign up

Export Citation Format

Share Document