The Use of 3D CFD Analysis in the Design of Air Intake Systems as a Visualisation Tool to Optimise Performance in Gas Turbine Applications

Author(s):  
Stephen D. Hiner

An optimised inlet air system design is an important factor in the gas turbine (GT) industry. Optimising the design of the air intake system is an increasingly challenging process as both the layout complexity and range of features that can be included in the intake system expands. These may include a combination of insect or trash screens, weather protection and filtration systems, silencers, anti-icing systems, ventilation system off takes and inlet heating or cooling systems for power augmentation. Poor designs can result in inefficient use of these components as well as losses in engine performance due to excessive pressure losses or distortion in the flow entering the gas turbine. High flow distortion, velocity, pressure or temperature, can induce compressor surge and high acromechanical stresses in compressor blades and vanes. In extreme cases this may result in blade or vane failures. Computational Fluid Dynamics (CFD) analysis is a powerful tool for visualisation of the predicted flow through a hypothetical air inlet system prior to manufacture. The CFD output plots include flow streamlines and contours, of pressure, velocity or temperature, at any plane in the model. These enable pressure losses, flow distortion issues, potential recirculation areas and high local velocities within the system to be reviewed. This allows optimisation of the installation design to minimise system pressure loss and flow distortion, both through the components and at the engine interface. This paper, with reference to case studies of gas turbine applications, highlights the impact that CFD analysis can have on the design of intake systems to ensure that the best overall performance is obtained. The process of developing the CFD geometry and how significant features of an installation are modeled is outlined. Environmental and operational conditions, such as cross winds can impact the flow through an intake system; therefore, incorporation of such factors into the model boundary conditions are covered. Typical output metrics from the CFD analysis are shown from selected case studies; total pressure drop and flow distortion at the interface plane between the intake system and gas turbine. The importance of experienced interpretation of the CFD output to define potential intake design modifications to improve system performance is highlighted. In specific cases model testing has been carried out to validate CFD results. Case study examples are used to show the improvements made in air intake performance that contribute to increased operational efficiency of the gas turbine application.

Author(s):  
Bruce Bouldin ◽  
Kiran Vunnam ◽  
Jose-Angel Hernanz-Manrique ◽  
Laura Ambit-Marin

Auxiliary Power Units (APU’s) are gas turbine engines which are located in the tail of most commercial and business aircraft. They are designed to provide electrical and pneumatic power to the aircraft on the ground while the main propulsion engines are turned off. They can also be operated in flight, when there is a desire to reduce the load on the propulsion engines, such as during an engine-out situation. Given an APU’s typical position in the back of an airplane, the intake systems for APU’s can be very complex. They are designed to provide sufficient airflow to both the APU and the cooling system while minimizing the pressure losses and the flow distortion. These systems must perform efficiently during static operation on the ground and during flight at very high altitudes and flight speeds. An APU intake system has been designed for a new commercial aircraft. This intake system was designed using the latest Computational Fluid Dynamics (CFD) techniques. Several iterations were performed between the APU supplier and the aircraft manufacturer since each of their components affects the performance of the other. For example, the aircraft boundary layer impacts APU intake performance and an open APU flap impacts aircraft drag. To validate the effectiveness of the CFD analysis, a full scale intake rig was designed and built to simulate the tailcone of the aircraft on the ground. This rig was very large and very detailed. It included a portion of the tailcone and rudder, plus the entire APU and cooling intake systems. The hardware was manufactured out of fiberglass shells, stereolithogrophy components and machined plastic parts. Three different airflows for the load compressor, engine compressor and cooling system had to be measured and throttled. Fixed instrumentation rakes were located to measure intake induced pressure losses and distortion at the APU plenum and cooling ducts. Rotating pressure and swirl survey rakes were located at the load compressor and engine compressor eyes to measure plenum pressure losses and distortion. Static pressure taps measured the flow pattern along the intake and flap surfaces. The intake rig was designed to be flexible so that the impact of rudder position, intake flap position, APU plenum baffle position and compressor airflow levels could be evaluated. This paper describes in detail the different components of the intake rig and discusses the complexity of conducting a rig test on such a large scale. It also presents the impact of the different component positions on intake performance. These results were compared to CFD predicted values and were used to calibrate our CFD techniques. The effectiveness of using CFD for APU intake design and its limitations are also discussed.


2019 ◽  
Vol 91 (8) ◽  
pp. 1077-1085 ◽  
Author(s):  
Filip Wasilczuk ◽  
Pawel Flaszynski ◽  
Piotr Kaczynski ◽  
Ryszard Szwaba ◽  
Piotr Doerffer ◽  
...  

Purpose The purpose of the study is to measure the mass flow in the flow through the labyrinth seal of the gas turbine and compare it to the results of numerical simulation. Moreover the capability of two turbulence models to reflect the phenomenon will be assessed. The studied case will later be used as a reference case for the new, original design of flow control method to limit the leakage flow through the labyrinth seal. Design/methodology/approach Experimental measurements were conducted, measuring the mass flow and the pressure in the model of the labyrinth seal. It was compared to the results of numerical simulation performed in ANSYS/Fluent commercial code for the same geometry. Findings The precise machining of parts was identified as crucial for obtaining correct results in the experiment. The model characteristics were documented, allowing for its future use as the reference case for testing the new labyrinth seal geometry. Experimentally validated numerical model of the flow in the labyrinth seal was developed. Research limitations/implications The research studies the basic case, future research on the case with a new labyrinth seal geometry is planned. Research is conducted on simplified case without rotation and the impact of the turbine main channel. Practical implications Importance of machining accuracy up to 0.01 mm was found to be important for measuring leakage in small gaps and decision making on the optimal configuration selection. Originality/value The research is an important step in the development of original modification of the labyrinth seal, resulting in leakage reduction, by serving as a reference case.


Author(s):  
Digvijay B. Kulshreshtha ◽  
S. A. Channiwala ◽  
Jitendra Chaudhary ◽  
Zoeb Lakdawala ◽  
Hitesh Solanki ◽  
...  

In the combustor inlet diffuser section of gas turbine engine, high-velocity air from compressor flows into the diffuser, where a considerable portion of the inlet velocity head PT3 − PS3 is converted to static pressure (PS) before the airflow enters the combustor. Modern high through-flow turbine engine compressors are highly loaded and usually have high inlet Mach numbers. With high compressor exit Mach numbers, the velocity head at the compressor exit station may be as high as 10% of the total pressure. The function of the diffuser is to recover a large proportion of this energy. Otherwise, the resulting higher total pressure loss would result in a significantly higher level of engine specific fuel consumption. The diffuser performance must also be sensitive to inlet velocity profiles and geometrical variations of the combustor relative to the location of the pre-diffuser exit flow path. Low diffuser pressure losses with high Mach numbers are more rapidly achieved with increasing length. However, diffuser length must be short to minimize engine length and weight. A good diffuser design should have a well considered balance between the confliction requirements for low pressure losses and short engine lengths. The present paper describes the effect of divergence angle on diffuser performance for gas turbine combustion chamber using Computational Fluid Dynamic Approach. The flow through the diffuser is numerically solved for divergence angles ranging from 5 to 25°. The flow separation and formation of wake regions are studied.


Author(s):  
Rossella Cinelli ◽  
Gianluca Maggiani ◽  
Serena Gabriele ◽  
Alessio Castorrini ◽  
Giuliano Agati ◽  
...  

Abstract The Gas Turbine (GT) Axial Compressor (AXCO) can absorb up to the 30% of the power produced by the GT, being the component with the largest impact over the performances. The axial compressor blades might undergo the fouling phenomena as a consequence of the unwanted material locally accumulating during the machine operations. The presence of such polluting substances reduces the aerodynamic efficiency as well as the air intake causing the drop of performances and the increase of the fuel consumption. To address the above-mentioned critical issues, several washing strategies have been implemented so far, among the most promising ones, High Flow On-Line Water Washing (HFOLWW) is worth to mention. Exploiting this technique, the performance levels are preserved, whereas the stops for maintenance should be reduced. Nevertheless, this comes at the cost of a long-term erosion exposure caused by the impact of water washing droplets. Hence, it was deemed necessary to carry out a finite element method (FEM) structural analysis of the first rotor stage of the compressor of an aeroderivative GT, integrated into the HFOLWW scheme, in order to evaluate the fatigue strength of the component subjected to the erosion; possibly along with its acceptability limits. The first step requires the determination of the blade areas affected by erosion, using computational fluid dynamics (CFD) simulations, followed by the creation and the 3D modelling of the damaged geometry. The final step consists in the evaluation of the static stress and the dynamic agents, to perform a fatigue analysis through the Goodman relation and carrying out a simulation of damage propagation exploiting the theory of fracture mechanics. This procedure has been extended to the damage-free baseline component to set-up a model suitable for comparison. The structural analysis confirms the design of the blade, moreover dynamic and static evaluation of the eroded profiles haven’t outlined any working, nor mechanical, issue. This entitles the structural choice of HFOLWW as a system which guarantees full performance levels of the compressor.


Author(s):  
Jingjing Chen ◽  
Yadong Wu ◽  
Zhonglin Wang ◽  
Anjenq Wang

The design of air induction system is targeting to balance the internal and external flow characteristics as well as the structure and aerodynamic integrity. An optimized air intake design that providing velocity and pressure distributions with least drag and maximum pressure recovery could end up at the expense of higher inlet flow distortion and lower stability margin. Indeed, design requirements and considerations at different operating conditions, such as takeoff, and high AOA maneuvers, could be significantly different from that of cruise and level flight. One of the most challenged operating conditions to be certified for FAR33 & FAR25 requirements is ground crosswind condition, when “Engine” is operating statically on the ground with high crosswind presented. It could accommodate inlet separation or distortion resulted from crosswind, and triggers fan or core stall, as well as induces high fan and/or engine vibrations. Studies of engine inlet compatibility become one of the major tasks required during the engine developing phase. This research is a parametric study of using CFD to evaluate operational characteristics of the air induction system. Comparisons of various inlet designs are made and characterized into four categories, i.e., i) Inlet pressure loss, ii) Nacelle drag, iii) Inlet flow distortion, and iv) Inlet Mach distribution. The objective is to assess the impact of air induction design of turbofan upon inlet compatibility. The research introduces the Kriging model and weighting coefficients to optimize internal total pressure loss and external drag using the isolated nacelle model. Bezier equation was used to fit the optimized curves obtained by changing several control points of the baseline configuration of nacelle. To study the impact of asymmetric lip on flow separation in ground crosswind condition, the paper built crosswind model which introduce a inlet boundary as fan face. Comparisons are then made between the original and optimal nacelle, to show correlation between inlet compatibility and air intake profile.


2016 ◽  
Vol 138 (9) ◽  
Author(s):  
Ismail Sezal ◽  
Nan Chen ◽  
Christian Aalburg ◽  
Rajesh Kumar V. Gadamsetty ◽  
Wolfgang Erhard ◽  
...  

In the oil and gas industry, large variations in flow rates are often encountered, which require compression trains with a wide operating range. If the stable operating range at constant speed is insufficient, variable speed drivers can be used to meet the requirements. Alternatively, variable inlet guide vanes (IGVs) can be introduced into the inlet plenum to provide pre- or counterswirl to the first-stage impeller, possibly eliminating the need for variable speed. This paper presents the development and validation of circumferentially nonuniform IGVs that were specifically designed to provide maximum angle variation at minimum losses and flow distortion for the downstream impeller. This includes the comparison of three concepts: a baseline design based on circumferentially uniform and symmetric profiles, two circumferentially nonuniform concepts based on uniquely cambered airfoils at each circumferential position, and a multi-airfoil configuration consisting of a uniquely cambered fixed part and a movable part. The idea behind the circumferentially nonuniform designs was to take into account nonsymmetric flow features inside the plenum and a bias toward large preswirl angles rather than counter-swirl during practical operation. The designs were carried out by computational fluid dynamics (CFD) and first tested in a steady, full-annulus cascade in order to quantify pressure losses and flow quality at the inlet to the impeller at different IGV setting angles (ranging from −20 deg to +60 deg) and flow rates. Subsequently, the designs were mounted in front of a typical oil and gas impeller on a high-speed rotating rig in order to determine the impact of flow distortion on the impeller performance. The results show that pressure losses in the inlet plenum could be reduced by up to 40% with the circumferentially nonuniform designs over the symmetric baseline configuration. Furthermore, a significant reduction in circumferential distortion could be achieved with the circumferentially nonuniform designs. The resulting improvement in impeller performance contributed approximately 40% to the overall efficiency gains for inlet plenum and impeller combined.


Author(s):  
Alan Hashem ◽  
Dani Fadda ◽  
Kenneth J. Fewel

An advanced three stage filtration/separation air intake system (Compact II) is introduced in this paper. The system was developed to meet the current and expected future market demands for gas turbine combustion air treatment in a marine environment. Developing and testing of the Compact II are subjects of this paper.


Author(s):  
Roger Yee ◽  
Alan Oswald

A new generation of auxiliary ships to enter the U.S. Navy (USN) fleet is the AOE-6 SUPPLY CLASS. These fast combat support ships conduct operations at sea as part of a Carrier Battle group to provide oil, aviation fuel, and ammunition to the carrier and her escorts. The SUPPLY CLASS is the first ship in the entire USN fleet to use a combined gas turbine and diesel generator cooling air intake system to cool its respective engine modules. The cooling air intake was designed this way to save on costs. As the ships in this class continued with operations and problems of insufficient supply of cooling air for the gas turbines modules started surfacing, the entire intake system required investigation and analysis. Since the gas turbines and diesel generators share a common cooling air trunk, they were competing for air. This paper will outline the tests that were performed to determine the problems, the recommended solutions, and the lessons learned from the investigations.


Author(s):  
Prakash Ghose ◽  
Amitava Datta ◽  
Achintya Mukhopadhyay

A numerical study has been performed in an axisymmetric diffuser followed by a casing-liner annulus of a typical gas turbine combustor to analyze the flow structure and pressure recovery in the geometry. Static pressure recovery in a gas turbine combustor is important to ensure high pressure of air around the liner. However, the irreversible pressure losses reduce the static pressure recovery from the ideal value. The presence of swirl in the flow from compressor and prediffuser geometry before the dump diffuser influences the flow pattern significantly. In this study, flow structures are numerically predicted with different prediffuser angles and inlet swirl levels for different dump gaps. Streamline distributions and pressure plots on the casing and liner walls are analyzed. Static pressure recovery coefficients are obtained from the pressure distributions across the combustor. The effect of dump gap on the static pressure recovery has also been evaluated. It is observed that the best static pressure recovery can be obtained at optimum values of inlet swirl level and prediffuser angle. Dump gap is found to have significant influence on the static pressure recovery only at small prediffuser angle.


Author(s):  
V. L. Blinov ◽  
I. S. Zubkov ◽  
Yu. M. Brodov ◽  
B. E. Murmanskij

THE PURPOSE. To study the issues of air intake system’s performance as the part of the gas turbines. To estimate the possibility of modeling different performance factors of air intake systems with numerical simulation methods. To develop the recommendations of setting up the grid and the numerical models for researches in air intake system’s performance and assessing the technical condition of elements of it. METHODS. The main method, which was used during the whole study, is computational fluid dynamics with usage of CAE-systems.RESULTS. During the study the recommendations for setting up the numerical model were developed. Such factors as grid model parameters, roughness scale, pressure drop in elements of air intake system and some more were investigated. The method for heat exchanger’s performance simulation were created for modeling the air temperature raising. CONCLUSION. The air intake system’s performance analysis becomes one of the actual topics for research because of the high demands of gas turbines to air, which is used in its annulus. The main part of these researches is in analysis of dangerous regimes of work (e.g. the icing process of annulus elements) or in assessing technical condition of air intake systems and its influence to the gas turbine as a whole. The developed method of numerical simulation allows to get the adequate results with low requirements for computational resources. Also this method allows to model the heat exchanger performance and study its defects’ influence to the performance of air intake system as a whole. 


Sign in / Sign up

Export Citation Format

Share Document