Syngas Capable Combustion Systems Development for Advanced Gas Turbines

Author(s):  
Satish Gadde ◽  
Jianfan Wu ◽  
Anil Gulati ◽  
Gerry McQuiggan ◽  
Berthold Koestlin ◽  
...  

In the age of volatile and ever increasing natural gas fuel prices, strict new emission regulations and technological advancements, modern IGCC plants are the answer to growing market demands for efficient and environmentally friendly power generation. IGCC technology allows the use of low cost opportunity fuels, such as coal, of which there is a more than a 200-year supply in the U.S., and refinery residues, such as petroleum coke and residual oil. Future IGCC plants are expected to be more efficient and have a potential to be a lower cost solution to future CO2 and mercury regulations compared to the direct coal fired steam plants. Siemens has more than 300,000 hours of successful IGCC plant operational experience on a variety of heavy duty gas turbine models in Europe and the U.S. The gas turbines involved range from SGT5-2000E to SGT6-3000E (former designations are shown on Table 1). Future IGCC applications will extend this experience to the SGT5-4000F and SGT6-4000F/5000F/6000G gas turbines. In the currently operating Siemens’ 60 Hz fleet, the SGT6-5000F gas turbine has the most operating engines and the most cumulative operating hours. Over the years, advancements have increased its performance and decreased its emissions and life cycle costs without impacting reliability. Development has been initiated to verify its readiness for future IGCC application including syngas combustion system testing. Similar efforts are planned for the SGT6-6000G and SGT5-4000F/SGT6-4000F models. This paper discusses the extensive development programs that have been carried out to demonstrate that target emissions and engine operability can be achieved on syngas operation in advanced F-class 50 Hz and 60 Hz gas turbine based IGCC applications.

Author(s):  
P. A. Phillips ◽  
Peter Spear

After briefly summarizing worldwide automotive gas turbine activity, the paper analyses the power plant requirements of a wide range of vehicle applications in order to formulate the design criteria for acceptable vehicle gas turbines. Ample data are available on the thermodynamic merits of various gas turbine cycles; however, the low cost of its piston engine competitor tends to eliminate all but the simplest cycles from vehicle gas turbine considerations. In order to improve the part load fuel economy, some complexity is inevitable, but this is limited to the addition of a glass ceramic regenerator in the 150 b.h.p. engine which is described in some detail. The alternative further complications necessary to achieve satisfactory vehicle response at various power/weight ratios are examined. Further improvement in engine performance will come by increasing the maximum cycle temperature. This can be achieved at lower cost by the extension of the use of ceramics. The paper is intended to stimulate the design application of the gas turbine engine.


Author(s):  
T. L. Ragland

After industrial gas turbines have been in production for some amount of time, there is often an opportunity to improve or “uprate” the engine’s output power or cycle efficiency or both. In most cases, the manufacturer would like to provide these uprates without compromising the proven reliability and durability of the product. Further, the manufacturer would like the development of this “Uprate” to be low cost, low risk and result in an improvement in “customer value” over that of the original design. This paper describes several options available for enhancing the performance of an existing industrial gas turbine engine and discusses the implications for each option. Advantages and disadvantages of each option are given along with considerations that should be taken into account in selecting one option over another. Specific options discussed include dimensional scaling, improving component efficiencies, increasing massflow, compressor zero staging, increasing firing temperature (thermal uprate), adding a recuperator, increasing cycle pressure ratio, and converting to a single shaft design. The implications on output power, cycle efficiency, off-design performance engine life or time between overhaul (TBO), engine cost, development time and cost, auxiliary requirements and product support issues are discussed. Several examples are provided where these options have been successfully implemented in industrial gas turbine engines.


Author(s):  
O. R. Schmoch ◽  
B. Deblon

The peripheral speeds of the rotors of large heavy-duty gas turbines have reached levels which place extremely high demands on material strength properties. The particular requirements of gas turbine rotors, as a result of the cycle, operating conditions and the ensuing overall concepts, have led different gas turbine manufacturers to produce special structural designs to resolve these problems. In this connection, a report is given here on a gas turbine rotor consisting of separate discs which are held together by a center bolt and mutually centered by radial serrations in a manner permitting expansion and contraction in response to temperature changges. In particular, the experience gained in the manufacture, operation and servicing are discussed.


2021 ◽  
Author(s):  
Takashi Nishiumi ◽  
Hirofumi Ohara ◽  
Kotaro Miyauchi ◽  
Sosuke Nakamura ◽  
Toshishige Ai ◽  
...  

Abstract In recent years, MHPS achieved a NET M501J gas turbine combined cycle (GTCC) efficiency in excess of 62% operating at 1,600°C, while maintaining NOx under 25ppm. Taking advantage of our gas turbine combustion design, development and operational experience, retrofits of earlier generation gas turbines have been successfully applied and will be described in this paper. One example of the latest J-Series technologies, a conventional pilot nozzle was changed to a premix type pilot nozzle for low emission. The technology was retrofitted to the existing F-Series gas turbines, which resulted in emission rates of lower than 9ppm NOx(15%O2) while maintaining the same Turbine Inlet Temperature (TIT: Average Gas Temperature at the exit of the transition piece). After performing retrofitting design, high pressure rig tests, the field test prior to commercial operation was conducted on January 2019. This paper describes the Ultra-Low NOx combustor design features, retrofit design, high pressure rig test and verification test results of the upgraded M501F gas turbine. In addition, it describes another upgrade of turbine to improve efficiency and of combustion control system to achieve low emissions. Furthermore it describes the trouble-free upgrade of seven (7) units, which was completed by utilizing MHPS integration capabilities, including handling all the design, construction and service work of the main equipment, plant and control systems.


2018 ◽  
Vol 141 (4) ◽  
Author(s):  
Stian Madsen ◽  
Lars E. Bakken

Optimized operation of gas turbines is discussed for a fleet of 11 GE LM2500PE engines at a Statoil North Sea offshore field in Norway. Three engines are generator drivers, and eight engines are compressor drivers. Several of the compressor drive engines are running at peak load (T5.4 control), hence, the production rate is limited by the available power from these engines. The majority of the engines discussed run continuously without redundancy, hence, the gas turbine uptime is critical for the field's production and economy. The performance and operational experience with online water wash at high water-to-air ratio (w.a.r.), as well as successful operation at longer maintenance intervals and higher average engine performance are described. The water-to-air ratio is significantly increased compared to the original equipment manufacturer (OEM) limit (OEM limit is 17 l/min which yields approximately 0.5% water-to-air ratio). Today the engines are operated at a water rate of 50 l/min (three times the OEM limit) which yields a 1.4% water-to-air ratio. Such a high water-to-air ratio has been proven to be the key parameter for obtaining good online water wash effectiveness. Possible downsides of high water-to-air ratio have been thoroughly studied.


Author(s):  
James DiCampli

Combined heat and power (CHP) is an application that utilizes the exhaust heat generated from a gas turbine and converts it into a useful energy source for heating & cooling, or additional electric generation in combined cycle configurations. Compared to simple-cycle plants with no heat recovery, CHP plants emit fewer greenhouse gasses and other emissions, while generating significantly more useful energy per unit of fuel consumed. Clean plants are easier to permit, build and operate. Because of these advantages, projections show CHP capacity is expected to double and account for 24% of global electricity production by 2030. An aeroderivative power plant has distinct advantages to meet CHP needs. These include high thermal efficiency, low cost, easy installation, proven reliability, compact design for urban areas, simple operation and maintenance, fuel flexibility, and full power generation in a very short time period. There has been extensive discussion and analyses on modifying purge requirements on cycling units for faster dispatch. The National Fire Protection Association (NFPA) has required an air purge of downstream systems prior to startup to preclude potentially flammable or explosive conditions. The auto ignition temperature of natural gas fuel is around 800°F. Experience has shown that if the exhaust duct contains sufficient concentrations of captured gas fuel, and is not purged, it can ignite immediately during light off causing extensive damage to downstream equipment. The NFPA Boiler and Combustion Systems Hazards Code Committee have developed new procedures to safely provide for a fast-start capability. The change in the code was issued in the 2011 Edition of NFPA 85 and titled the Combustion Turbine Purge Credit. For a cycling plant and hot start conditions, implementation of purge credit can reduce normal start-to-load by 15–30 minutes. Part of the time saving is the reduction of the purge time itself, and the rest is faster ramp rates due to a higher initial temperature and pressure in the heat recovery steam generator (HRSG). This paper details the technical analysis and implementation of the NFPA purge credit recommendations on GE Power and Water aeroderivative gas turbines. This includes the hardware changes, triple block and double vent valve system (or drain for liquid fuels), and software changes that include monitoring and alarms managed by the control system.


Author(s):  
Mark van Roode

Ceramic gas turbine development that started in the 1950s has slowed considerably since most of the large-scale ceramic gas turbine development programs of the 1970s–1990s ended. While component durability still does not meet expectations, the prospect of significant energy savings and emissions reductions, potentially achievable with ceramic gas turbines, continues to justify development efforts. Four gas turbine applications have been identified that could be commercially attractive: a small recuperated gas turbine (microturbine) with ∼35% electrical efficiency, a recuperated gas turbine for transportation applications with ∼40% electrical efficiency with potential applications for efficient small engine cogeneration, a ∼40% efficient mid-size industrial gas turbine and a ∼63% (combined cycle) efficient utility turbine. Key technologies have been identified to ensure performance and component durability targets can be met over the expected life cycle for these applications. These technologies include: a Si3N4 or SiC with high fracture toughness, durable EBCs for Si3N4 and SiC, an effective EBC/TBC for SiC/SiC, a durable Oxide/Oxide CMC with thermally insulating coating, and the Next Generation CMCs with high strength that can be used as structural materials for turbine components for small engines and for rotating components in engines of various sizes. The programs will require integrated partnerships between government, national laboratories, universities and industry. The overall cost of the proposed development programs is estimated at U.S. $100M over ten-years, i.e. an annual average of U.S. $10M.


Author(s):  
V. G. McDonell ◽  
M. W. Effinger ◽  
J. L. Mauzey

The deployment of small gas turbines at landfills and wastewater treatment plants is attractive due to the availability of waste fuel gases generated at these sites and the need for onsite power and/or heat. The fuel gases produced by these applications typically contain 35 to 75% of the heating value of natural gas and contain methane (CH4) diluted primarily with carbon dioxide (CO2) and sometimes nitrogen (N2). Demonstrations of 30 to 250 kW gas turbines operating on these waste fuels are underway, but little detailed information on the systematic effect of the gas composition on performance is available. Growth in the use of small gas turbines for these applications will likely require that they meet increasingly stringent emission regulations, creating a need to better understand and to further optimize emissions performance for these gases. The current study characterizes a modified commercial natural gas fired 60 kW gas turbine operated on simluated gases of specified composition and establishes a quantitative relationship between fuel composition, engine load, and emissions performance. The results can be used to determine the expected impact of gas composition on emissions performance.


1984 ◽  
Vol 106 (4) ◽  
pp. 935-939
Author(s):  
H. A. Kidd

The continued use of gas turbines in industrial applications and increased customer desires for trend analysis has led gas turbine suppliers to develop sophisticated, reliable, cost-effective vibration monitoring systems. This paper discusses the application of case vibration monitoring systems and the design criteria for each component. Engine installation, transducer mounting brackets, types of transducers, interconnecting cables and connectors, charge amplifiers, and signal conditioning and monitoring are considered. Examples are given of the benefits experienced with the final system in several of Dresser Clark’s engine development programs, by manufacturing and production testing, and by Dresser’s field service staff.


Sign in / Sign up

Export Citation Format

Share Document