Impact of Swirling Flow Structure on Shear Layer Vorticity Fluctuation Mechanisms

Author(s):  
Benjamin Mathews ◽  
Samuel Hansford ◽  
Jacqueline O’Connor

Vorticity fluctuations have been identified as an important coupling mechanism during velocity-coupled combustion instability in swirl-stabilized flames. Acoustic oscillations in the combustor can cause all components of vorticity to oscillate, particularly the cross-stream, or azimuthal, vorticity that is excited in shear layer roll-up, and streamwise, or axial, vorticity that is excited during swirl fluctuations. These fluctuations can be induced by longitudinal acoustic fluctuations that oscillate across the swirler and dump plane upstream of the flame. While these fluctuations have been identified in a number of configurations, the sensitivity of this mechanism to flow configuration and boundary conditions has not been studied parametrically. In this study, we investigate the impact of time-averaged swirl level, confinement, and forcing frequency and amplitude on vorticity fluctuation dynamics in the azimuthal direction of a non-reacting swirling jet. The goal of this work is to better understand the dependence of vorticity fluctuations on these parameters as well as the vorticity conversion processes that occur in the flow. We have shown that vorticity fluctuation levels vary with time-averaged swirl number, particularly in the presence of a self-excited precessing vortex core, which dampens most acoustically-driven motion. Additionally, variations in forcing frequency excite flow response in different portions of the flow, particularly for different swirl numbers. Finally, confinement drastically changes the flow topology and unforced dynamics, resulting in significantly different response to forcing and generation of vortical fluctuations.

Author(s):  
Ya. Ya. Yakymechko ◽  
Ya. М. Femiak

The article presents the theoretical research of the use of swirling flows with reverse jets and with developed precessing vortex core in cavitators and other devices. While describing the motion of the vortex core in the free swirling jet of the fluid it is necessary to take into account that according to the experimental data the vortex core can swirl along the length of the jet and moves around the jet axis in the zone between the area of reverse flows and the boundary outer layer. In this case, it is the vortex core which is under the influence of the basic swirling flow. Herewith, it is necessary to take into account that due to commensurate sizes of the vortex core and the jet, the impact on the core will be different owing to non-uniform distribution of speeds in the jet itself. On the basis of the known formulas, the authors have deduced the improved theoretical dependence of the degree of flow swirl on the flow rate, the vortex core vibration frequency and structural parameters under the conditions of the consistency of swirling flow itself. The theoretical dependence shows that the degree of flow swirl is directly proportional to the precessing vortex core vibration frequency and inversely proportional to the square of mass flow rate. Thus, ensuring the consistency of the swirling flow with varying flow-rate requires the corresponding change of the swirl degree or the influence on the frequency of vibrations of the precessing vortex core. On the basis of the deduced theoretical dependences, the authors have developed and implemented in the computer programs the following calculations: the dependence of the coefficient of the flow swirl on the vortex core vibration frequency; the simulation of the precession of the vortex core in the swirling flow; the research of speed fluctuation in the swirling flow; speed fluctuation during the interaction of swirling jets.  


Author(s):  
Mark Frederick ◽  
Joshua Dudash ◽  
Jacqueline O’Connor ◽  
Kiran Manoharan ◽  
Santosh Hemchandra ◽  
...  

Combustion instability, or the coupling between flame heat release rate oscillations and combustor acoustics, is a significant issue in the operation of gas turbine combustors. This coupling is often driven by oscillations in the flow field. Shear layer roll-up, in particular, has been shown to drive longitudinal combustion instability in a number of systems, including both laboratory and industrial combustors. One method for suppressing combustion instability would be to suppress the receptivity of the shear layer to acoustic oscillations, severing the coupling mechanism between the acoustics and the flame. Previous work suggested that the existence of a precessing vortex core (PVC) may suppress the receptivity of the shear layer, and the goal of this study is to first, confirm that this suppression is occurring, and second, understand the mechanism by which the PVC suppresses the shear layer receptivity. In this paper, we couple experiment with linear stability analysis to determine whether a PVC can suppress shear layer receptivity to longitudinal acoustic modes in a non-reacting swirling flow at a range of swirl numbers. The shear layer response to the longitudinal acoustic forcing manifests as an m = 0 mode since the acoustic field is axisymmetric. The PVC has been shown both in experiment and linear stability analysis to have m = 1 and m = −1 modal content. By comparing the relative magnitude of the m = 0 and m = −1,1 modes, we quantify the impact that the PVC has on the shear layer response. The mechanism for shear layer response is determined using companion forced response analysis, where the shear layer disturbance growth rates mirror the experimental results. Differences in shear layer thickness and azimuthal velocity profiles drive the suppression of the shear layer receptivity to acoustic forcing.


2007 ◽  
Vol 583 ◽  
pp. 99-122 ◽  
Author(s):  
SHANWU WANG ◽  
VIGOR YANG ◽  
GEORGE HSIAO ◽  
SHIH-YANG HSIEH ◽  
HUKAM C. MONGIA

A comprehensive study on confined swirling flows in an operational gas-turbine injector was performed by means of large-eddy simulations. The formulation was based on the Favre-filtered conservation equations and a modified Smagorinsky treatment of subgrid-scale motions. The model was then numerically solved by means of a preconditioned density-based finite-volume approach. Calculated mean velocities and turbulence properties show good agreement with experimental data obtained from the laser-Doppler velocimetry measurements. Various aspects of the swirling flow development (such as the central recirculating flow, precessing vortex core and Kelvin–Helmholtz instability) were explored in detail. Both co- and counter-rotating configurations were considered, and the effects of swirl direction on flow characteristics were examined. The flow evolution inside the injector is dictated mainly by the air delivered through the primary swirler. The impact of the secondary swirler appears to be limited.


NANO ◽  
2021 ◽  
Author(s):  
Arslan Usman ◽  
Abdul Sattar ◽  
Hamid Latif ◽  
Muhammad Imran

The impact of phonon and their surrounding environment on exciton and its complexes were investigated in monolayer WSe2 semiconductor. Phonon up-conversion has been studied in past for conventional III–V semiconductors, but its role in two-dimensional layered transition metal dichalcogenides has rarely been explored. We investigated the photoluminescence up-conversion mechanism in WSe2 monolayer and found that a lower energy photon gain energy upto 64[Formula: see text]meV to be up-converted to emission photon at room temperature. Moreover, the phonon-exciton coupling mechanism has also been investigated and the role of dielectric screening has been explored to get complete insight of coulomb’s interaction in these electron-hole pairs. Investigations of charge carrier’s lifetime reveal that boron nitride encapsulated monolayer has shorter recombination time as low as 41 ps as compared to a bare monolayer on SiO2 substrate. These results are very promising for realizing spintronics-based application from two-dimensional layered semiconductors.


Author(s):  
K.M. Moiseeva ◽  
◽  
A.Yu. Krainov ◽  
E.I. Rozhkova ◽  
◽  
...  

Swirling combustion is currently one of the most important engineering problems in physics of combustion. There is a hypothesis on the increase in the combustion efficiency of reacting gas mixtures in combustion chambers with swirling flows, as well as on the increase in the efficiency of fuel combustion devices. In this paper, it is proposed to simulate a swirling flow by taking into account the angular component of the flow velocity. The aim of the study is to determine the effect of the angular component of the flow velocity on the characteristics of the flow and combustion of an air suspension of coal dust in a pipe. The problem is solved in a twodimensional axisymmetric approximation with allowance for a swirling flow. A physical and mathematical model is based on the approaches of the mechanics of multiphase reacting media. A solution method involves the arbitrary discontinuity decay algorithm. The impact of the flow swirl and the size of coal dust particles on the gas temperature distribution along the pipe is determined.


Author(s):  
Mark Frederick ◽  
Kiran Manoharan ◽  
Joshua Dudash ◽  
Brian Brubaker ◽  
Santosh Hemchandra ◽  
...  

Combustion instability, the coupling between flame heat release rate oscillations and combustor acoustics, is a significant issue in the operation of gas turbine combustors. This coupling is often driven by oscillations in the flow field. Shear layer roll-up, in particular, has been shown to drive longitudinal combustion instability in a number of systems, including both laboratory and industrial combustors. One method for suppressing combustion instability would be to suppress the receptivity of the shear layer to acoustic oscillations, severing the coupling mechanism between the acoustics and the flame. Previous work suggested that the existence of a precessing vortex core (PVC) may suppress the receptivity of the shear layer, and the goal of this study is to first, confirm that this suppression is occurring, and second, understand the mechanism by which the PVC suppresses the shear layer receptivity. In this paper, we couple experiment with linear stability analysis to determine whether a PVC can suppress shear layer receptivity to longitudinal acoustic modes in a nonreacting swirling flow at a range of swirl numbers. The shear layer response to the longitudinal acoustic forcing manifests as an m = 0 mode since the acoustic field is axisymmetric. The PVC has been shown both in experiment and linear stability analysis to have m = 1 and m = −1 modal content. By comparing the relative magnitude of the m = 0 and m = −1,1 modes, we quantify the impact that the PVC has on the shear layer response. The mechanism for shear layer response is determined using companion forced response analysis, where the shear layer disturbance growth rates mirror the experimental results. Differences in shear layer thickness and azimuthal velocity profiles drive the suppression of the shear layer receptivity to acoustic forcing.


2013 ◽  
Vol 13 (12) ◽  
pp. 31891-31932 ◽  
Author(s):  
R. Paoli ◽  
O. Thouron ◽  
J. Escobar ◽  
J. Picot ◽  
D. Cariolle

Abstract. Large-eddy simulations of sub-kilometer-scale turbulence in the upper troposphere lower stratosphere (UTLS) are carried out and analyzed using the mesoscale atmospheric model Méso-NH. Different levels of turbulence are generated using a large-scale stochastic forcing technique that was especially devised to treat atmospheric stratified flows. The study focuses on the analysis of turbulence statistics, including mean quantities and energy spectra, as well as on a detailed description of flow topology. The impact of resolution is also discussed by decreasing the grid spacing to 2 m and increasing the number of grid points to 8×109. Because of atmospheric stratification, turbulence is substantially anisotropic, and large elongated structures form in the horizontal directions, in accordance with theoretical analysis and spectral direct numerical simulations of stably stratified flows. It is also found that the inertial range of horizontal kinetic energy spectrum, generally observed at scales larger than a few kilometers, is prolonged into the sub-kilometric range, down to the Ozmidov scales that obey isotropic Kolmorogov turbulence. The results are in line with observational analysis based on in situ measurements from existing campaigns.


2021 ◽  
Vol 23 (Supplement_6) ◽  
pp. vi130-vi130
Author(s):  
Johanna Heugenhauser ◽  
Malik Galijasevic ◽  
Stephanie Mangesius ◽  
Johanna Buchroithner ◽  
Friedrich Erhart ◽  
...  

Abstract INTRODUCTION Response assessment in the treatment of glioblastoma (GB) based on MR-imaging is still challenging, in particular for immunotherapeutic strategies. Several assessment tools have been proposed. In this post-hoc analysis we compared response assessment criteria (MacDonald, RANO, mRANO, Vol.-mRANO, iRANO) in newly diagnosed GB patients treated with tumor lysate-charged autologous dendritic cells (Audencel) and determined the differences in prediction of progression free survival (PFS) and overall survival (OS). METHODS 76 patients with newly diagnosed GB enrolled in a multicenter randomized phase II trial receiving standard of care (SOC, n= 40) or SOC + Audencel vaccine (n= 36) were included. Tumor volumes were calculated by semiautomatic segmentation. To detect differences in PFS among the assessment criteria Kruskal-Wallis-test, for correlation analysis Spearman test was used. RESULTS There was a significant difference in median PFS based on the different assessments (mRANO 8.55 months [9.10-14.03], Vol.-mRANO 8.61 months [9.72-14.92] compared to MacDonald 4.04 months [5.21-8.75] and RANO 4.16 months [5.28-8.61]. For the vaccination arm only, median PFS by iRANO was 5.95 months [5.70-11.54]). There was no difference in PFS between SOC and SOC + Audencel using the different response criteria. The best correlation between PFS and OS was detected for mRANO (r= 0.65, p< 0.001) and Vol.-mRANO (r= 0.69, p< 0.001). At an 8-month landmark, the impact of progressive disease on median OS was best shown for mRANO (13.70 months [13.13-18.98], and Vol.-mRANO 12.03 months [12.51-17.94]) compared to MacDonald 17.97 months [15.45-20.92], RANO 17.97 months [15.92-20.95] and iRANO 17.34 months [14.99-22.73]. CONCLUSION When comparing different response assessments in GB patients treated with dendritic cell-based immunotherapy the best correlation between PFS and OS was observed for mRANO and Vol.-mRANO. Overall, no difference in PFS and OS was seen between the two treatment arms. iRANO was not superior for predicting OS in patients treated with Audencel.


Author(s):  
Finn Lückoff ◽  
Moritz Sieber ◽  
Christian Oliver Paschereit ◽  
Kilian Oberleithner

Abstract The reduction of polluting NOx emission remains a driving factor in the design process of swirl-stabilized combustion systems, to meet strict legislative restrictions. In reacting swirl flows, hydrodynamic coherent structures, such as periodic large-scale vortices in the shear layer, induce zones with increased heat release rate fluctuations in connection with temperature peaks, which lead to an increase of NOx emissions. Such large-scale vortices can be induced by the helical coherent structure known as precessing vortex core (PVC), which influences the flow and flame dynamics of reacting swirl flows under certain operating conditions. We developed an active flow control system, which allows for a targeted actuation of the PVC, to investigate its impact on important combustion properties. In this study, the direct active flow control is used to actuate a PVC of arbitrary frequency and amplitude, which facilitates a systematic study of the impact of the PVC on NOx emissions. In the course of the present work, a perfectly premixed flame, which slightly damps the PVC, is studied in detail. Since the PVC is slightly damped, it can be precisely excited by means of open-loop flow control. In connection with time-resolved OH*-chemiluminescence and stereoscopic PIV measurements, the flame and flow response to PVC actuation as well as the impact of the actuated PVC on flow and flame dynamics are characterized. It turns out that the PVC rolls up the inner shear layer, which results in an interaction of PVC-induced vortices and flame. This interaction considerably influences the measured level of NOx emissions, which grow with increasing PVC amplitude in a perfectly premixed flame. Nearly the same increase is to be seen for a partially premixed flame. This in contrast to previous studies, where the PVC is assumed to reduce the NOx emissions due to vortex-enhanced mixing.


Sign in / Sign up

Export Citation Format

Share Document