Effect of Turbulence and Transition Models on the CFD-Based Performance Prediction of Wind Turbines

Author(s):  
Benedikt Ernst ◽  
Joerg R. Seume ◽  
Florian Herbst

Computational Fluid Dynamics (CFD) simulations are becoming increasingly important to enhancing the understanding of rotor aerodynamics and improving blade design for wind turbines. The present study addresses the effect of turbulence treatment on the CFD-based performance assessment of wind turbines by successively increasing the modeling depth. A process for 2D and 3D CFD simulations is described, which is based on the geometry of the NREL 5MW reference wind turbine. It is shown that the main differences between fully turbulent computations and transition model simulations with and without additional curvature correction model occur in the inner blade region, and increase in 3D flow regimes. Literature and the findings of the present study lead to the conclusion that simulations with the transition model in conjunction with the curvature correction model should be preferred. The resulting power output of this setup is also in good agreement with the Blade Element Momentum (BEM) calculation.

Author(s):  
Kirk W. Dotson ◽  
William A. Engblom

Launch vehicles composed of three bodies can experience the shedding of vortices due to strong crossflow acceleration towards the center body, or core. Upon formation, the vortices obstruct the freestream flow, which diverts the local angle of attack towards the opposite side of the core, and a new pair of vortices are formed. This alternate vortex-pair shedding can induce significant pitch structural responses during transonic flight. Computational fluid dynamics (CFD) simulations have been used to illustrate the phenomenon and to generate forcing functions for structural dynamic analyses. Structural responses from these analyses are in good agreement with flight responses. This success suggests that CFD can be used for preflight predictions of the phenomenon. It also indicates that CFD can be used to supplement wind tunnel data when the test instrumentation does not adequately resolve the alternate vortex-pair shedding.


Author(s):  
Anand Bahuguni ◽  
Krishnamoorthi Sivalingam ◽  
Peter Davies ◽  
Johan Gullman-Strand ◽  
Vinh Tan Nguyen

Most of the wind turbine analysis softwares widely being used in the market are based on the Blade Element Momentum method (BEM). The two important parameters that the BEM codes calculate are the axial and the tangential induction factors. These factors are calculated based on the empirical blade lift coefficient Cl and drag coefficient Cd along with some loss/correction functions to account for the losses near the blade tip and the hub. The current study focusses on verifying the values of induction factors using Computational Fluid Dynamics (CFD) simulations for floating offshore wind turbines at a selected sea state. The study includes steady state calculations as well as transient calculations for pitching motions of the turbine due to waves. The NREL FAST software is used to set the simulation scenarios according to OC3 Phase IV cases. The blades are divided a number of elements in CFD calculations and the data are extracted at individual elements to have an exact comparison with the BEM based calculations.


Author(s):  
Kristopher Toussaint ◽  
Federico Torriano ◽  
Jean-Franc¸ois Morissette ◽  
Claude Hudon ◽  
Marcelo Reggio

In 2006, the first Computational Fluid Dynamics (CFD) simulations of the ventilation of specific hydro-generator components were performed at the Hydro-Que´bec Research Institute (IREQ) and lately the entire ventilation circuit is being investigated. Due to the complexity of flow calculations, a validation process is necessary and for this reason a 1:4 scale model of a hydro-generator has been built at IREQ to get experimental data by means of particle image velocimetry (PIV). This paper presents 2D and 3D simulation results for the scale model obtained with a commercial CFD code and addresses the challenges associated with the application of CFD to hydro-generators. In particular, the effect of rotor-stator interface (RSI) types and configuration is analyzed to determine the approach that best suits this application. Two-dimensional calculations show that the steady state multiple frames of reference (MFR) solution is highly sensitive to the type (frozen rotor (FR) vs. mixing plane (MP)) and location of the RSI. A parametric study is performed where each interface configuration is compared to the transient case results. The MFR-FR interface model produces results that may vary significantly depending on the relative rotor position and the radial location of the RSI in the air gap. The MFR-MP interface model appears to be more coherent with reference values obtained from a transient case, since the radial velocity profiles in the stator are similar. Furthermore with an appropriate radial positioning of the interface, the windage losses are within 20%. Simulations of the complete 3D ventilation circuit revealed a maximum variation of 10% in both total ventilation flow rate and total windage losses, between the RSI configurations studied. However, the relative flow distributions, normalized with respect to the total flow rate, are unaffected by changes in RSI configuration. This paper focuses mainly on sensitivity studies to numerical settings, but this comparison still requires experimental validation before any final conclusions can be made.


Author(s):  
Qide Zhang ◽  
Kannan Sundaravadivelu ◽  
Ningyu Liu ◽  
Quan Jiang

This work introduces a method by using an empirical formula to quickly predict windage caused power loss of hard disk drives. The results obtained by the empirical formula are compared with those obtained by computational fluid dynamics (CFD) simulations and validated by the experimental measurement data. Good agreement is observed among these three sets of data.


2016 ◽  
Vol 16 (6) ◽  
pp. 1700-1709 ◽  
Author(s):  
Yazan Taamneh

Computational fluid dynamics (CFD) simulations were performed for experiments carried out with two identical pyramid-shaped solar stills. One was filled with Jordanian zeolite-seawater and the second was filled with seawater only. This work is focused on CFD analysis validation with experimental data conducted using a model of phase change interaction (evaporation-condensation model) inside the solar still. A volume-of-fluid (VOF) model was used to simulate the inter phase change through evaporation-condensation between zeolite-water and water vapor inside the two solar stills. The effect of the volume fraction of the zeolite particles (0 ≤ ϕ ≤ 0.05) on the heat and distillate yield inside the solar still was investigated. Based on the CFD simulation results, the hourly quantity of freshwater showed a good agreement with the corresponding experimental data. The present study has established the utility of using the VOF two phase flow model to provide a reasonable solution to the complicated inter phase mass transfer in a solar still.


Author(s):  
J. Jack Zhang ◽  
John D. Pye ◽  
Graham O. Hughes

Convective air flows are a significant source of thermal loss from tubular cavity receivers in concentrating solar-thermal power (CSP) applications. Reduction in these losses is traditionally achieved by tailoring the cavity geometry, but the potential of this method is limited by the aperture size. The use of active airflow control, in the form of an air curtain, is an established practice to prevent infiltration of cold air through building doorways. Its application in reducing solar receiver convective heat loss is new. In this study, computational fluid dynamics (CFD) simulations are presented for the zero wind case, demonstrating that an optimised air curtain can readily reduce convective losses by more than 45%. A parametric investigation of jet direction and speed indicates that two distinct optimal air curtain flow structures exist. In the first, the jet reduces the size of the convective zone within the cavity by partially sealing the aperture. The optimum velocity range for this case occurs with a low strength jet. At higher jet speeds, the losses are generally set by the flow induced in the cavity and entrainment into the jet. However, a second optimal configuration is discovered for a narrow range of jet parameters, where the entrainment is reduced due to a shift in the stack neutral pressure level, allowing the jet to fully seal the cavity. A physical model is developed, based on the fluid physics of a jet and the ‘deflection modulus’ concept typically used to characterise air curtains in building heating and ventilation applications. The model has been applied to the solar thermal cavity case, and shows good agreement with the computational results.


Author(s):  
Christopher A. Long ◽  
Alan B. Turner ◽  
Guven Kais ◽  
Kok M. Tham ◽  
John A. Verdicchio

In some gas turbine aeroengines, the H.P. compressor is driven by the H.P. turbine through a conical shaft or drive cone. This drive cone is enclosed by a stationary surface that forms the supporting material for the combustion chambers. Air used to cool the turbine blades is directed into the space around the drive cone, and a major concern to an engine designer is the temperature rise in this air due to frictional dissipation and heat transfer. This paper presents results from a combined experimental and CFD investigation into the flow within an engine representative H.P. compressor drive cone cavity. The experimental results show similarities in flow structure to that found in classic rotor-stator systems. Both 2D and 3D CFD simulations were carried out using the FLUENT/UNS code. The 3D model which included the actual compressor blade tip clearance gave the best agreement with the experimental data. However, the computational resource required to run the 3D model limits its practical use. The 2D CFD model, however, was found to give good agreement with experiment, providing care was exercised in selecting an appropriate value of initial tangential velocity.


2018 ◽  
Vol 140 (4) ◽  
Author(s):  
Daniel B. Biggs ◽  
Christopher B. Churchill ◽  
John A. Shaw

An experimental program is presented of heated tension springs in an external crossflow over a range of laminar Reynolds numbers, spring stretch ratios, and angles of attack. Extensive measurements of the forced convection heat transfer of helical wire within a wind tunnel reveal an interesting nonmonotonic dependence on angle of attack. Computational fluid dynamics (CFD) simulations, showing good agreement with the experimental data, are used to explore the behavior and gain a better understanding of the observed trends. A dimensionless correlation is developed that well captures the experimental and CFD data and can be used as an efficient computational tool in broader applications.


2021 ◽  
Vol 9 (2) ◽  
pp. 202
Author(s):  
Soonseok Song ◽  
Yigit Kemal Demirel ◽  
Claire De Marco Muscat-Fenech ◽  
Tonio Sant ◽  
Diego Villa ◽  
...  

Research into the effects of hull roughness on ship resistance and propulsion is well established, however, the effect of heterogeneous hull roughness is not yet fully understood. In this study, Computational Fluid Dynamics (CFD) simulations were conducted to investigate the effect of heterogeneous hull roughness on ship resistance. The Wigley hull was modelled with various hull conditions, including homogeneous and heterogeneous hull conditions. The results were compared against existing experimental data and showed a good agreement, suggesting that the CFD approach is valid for predicting the effect of heterogeneous hull roughness on ship resistance. Furthermore, the local distributions of the wall shear stress and roughness Reynolds number on the hull surface were examined to assess the flow characteristics over the heterogeneous hull roughness.


2019 ◽  
Vol 63 (4) ◽  
pp. 308-318 ◽  
Author(s):  
Balázs Farkas ◽  
Jenő Miklós Suda

The evaluation of a newly designed oil-free rotary compressor is presented based on transient 3D Computational Fluid Dynamics (CFD) simulations. The simulations are performed at low compression ratios and low pressure ratios and low rotational speeds. To place the results into context, the data presented in related literature was processed and summarized. The methods related to the CFD model of the newly designed compressor were developed, summarized and evaluated. The accessed CFD data are in good agreement with the results of the former rolling piston compressor related investigations. The oil free operation prevents the contamination of the working fluid from lubricant. Since the compressor is planned to work in open cycle within the sensitive environment of thermal heat sources contamination free operation has to be accomplished. However, oil-free operation also results in significantly lower performance based on the modelling results.


Sign in / Sign up

Export Citation Format

Share Document