Experimental Investigation of Stall Inception and its Propagation in a Contra Rotating Axial Fan Under Radial Inflow Distortion

Author(s):  
Tegegn Dejene Toge ◽  
A. M. Pradeep

Radial inflow distortion is encountered by any turbomachine in some form or the other. Radial inflow distortion alters the design blade loading distribution by redistributing the velocity along the blade span. The present experimental study is aimed to understand the influence of radially distorted inflow on the stall inception and propagation in a low speed contra rotating axial flow fan (CRAF). The study is carried out near-stall and at stall mass flow conditions for the design speed and off-design rotational speed combinations of the rotors. Total pressure rakes and Kiel probe rakes are used for flow characterization at the inlet of rotor-1 and rotor-2. Data from seven-hole probe measurement is also used to calculate the incidence angle at rotors inlet and the total press loss at relative frame of reference. Unsteady pressure data from the casing wall mounted sensors is used to understand the stall inception mechanism. The unsteady pressure data is analyzed using wavelet transforms and Fast Fourier Transforms (FFT). Wavelet transform is used to identify the stall inception mechanism, whereas FFT is used for quantification of the stall parameters. The study reveals that the performance and the stability of the CRAF stage is highly affected in case of hub covered radial distorted inflow condition and the stall incepts at a higher mass flow compared with the undistorted flow. However, the effect of tip covered radial distorted inflow on the performance and stability is negligible, and the stall incepts at nearly the same mass flow rate as that of the undistorted flow. Moreover, the CRAF stage gives better performance at higher mass flow for tip radially distorted inflow compared with the undistorted case. The wavelet transform clearly indicates that stall inception occurs mainly through long length-scale disturbances (LLSDs) for both the rotors. It is also observed that in some cases, spikes are embedded within LLSDs. The combined effect of stall initiated due to inflow distortion and direct interaction of the wake and the tip leakage vortex from rotor-1 with rotor-2 made the LLSDs and spikes type disturbances much stronger for rotor-2 compared with rotor-1.

2015 ◽  
Vol 2015 ◽  
pp. 1-14 ◽  
Author(s):  
Tegegn Dejene Toge ◽  
A. M. Pradeep

The present paper is an attempt in understanding the stall inception mechanism in a low speed, contra rotating axial flow fan stage, using wavelet transforms. The rotors used in this study have relatively large tip gap (about 3% of the blade span) and aspect ratio of 3. The study was carried out near stall and at stall mass flow conditions for different speed ratios of rotor-2 to rotor-1. Unsteady pressure data from the casing wall mounted sensors are used to understand the stall inception mechanism. The wavelet transform clearly indicates that stall inception occurs mainly through long length scale disturbances for both rotors. It also reveals that short length disturbances occur simultaneously or intermittently in the case of rotor-1. The analysis shows the presence of a strong modal disturbance with 25–80% of the rotor frequency in the case of rotor-1 at the stall mass flow for all the speed combinations studied. The most interesting thing observed in the present study is that the frequency amplitude of the disturbance level is very small for both rotors.


Author(s):  
Leesang Cho ◽  
Hyunmin Choi ◽  
Seawook Lee ◽  
Jinsoo Cho

A study was done on the numerical and experimental analyses for the aerodynamic design of high performance of the counter rotating axial fan (CRF). Front rotor and rear rotor blades of a counter rotating axial fan are designed using the simplified meridional flow analysis method with the radial equilibrium equation and the free vortex design condition, according to design requirements. The through-flow fields and the aerodynamic characteristics of the designed rotor blades are analyzed by the matrix method and the frequency domain panel method. Fan performance curves are measured by following the standard fan testing method, KS B 6311. Three-dimensional flow fields in the CRF are analyzed by using the prism type five-hole probe. Performance characteristics of a counter-rotating axial flow fan are estimated for the variation of design parameters such as the hub to tip ratio, the taper ratio and the solidity. The effect of the hub to tip ratio on the fan efficiency is significant compared with the effects of other design parameters such as the solidity and the taper ratio. The fan efficiency is peak at the hub to tip ratio of 0.4, which is almost same point for the front rotor efficiency and rear rotor efficiency. The magnitudes of the meridional and relative velocities on the front and rear rotors are increased with the radial direction from hub to tip. This results in the reverse pressure gradient at the blade leading edges of both the front rotor and the rear rotor. Axial velocities of the CRF, which are measured by the prism type five-hole probe, are gradually increased at the mean radius due to the flow contraction effect. At the hub region, axial velocity is gradually decreased due to the flow separation and the hub vortex compare with design results. This result induces the increment of the incidence angle and the diffusion factor of the front rotor and the rear rotor.


Energies ◽  
2018 ◽  
Vol 11 (12) ◽  
pp. 3293 ◽  
Author(s):  
Lei Zhang ◽  
Liang Zhang ◽  
Qian Zhang ◽  
Kuan Jiang ◽  
Yuan Tie ◽  
...  

It is of great value to study the impact of abnormal blade installation angle on the inducement mechanism of rotating stall to achieve the active control of rotating stall in an axial fan. Based on throttle value function and SST k-ω turbulence model, numerical simulations of the unsteady flow process in stall condition of an axial flow fan with adjustable vanes were carried out, and the influence mechanism of abnormal stagger angle of a single blade in the second stage rotor on induced position and type of stall inception and evolution process of rotating stall were analyzed. The results show that compared with synchronous adjustment of blade angle, the blade with abnormal stagger angle will cause the increase of flow rate at the beginning of stall and make the fan fall into an unstable condition in advance. The existence of blade with abnormal angle does not cause the change of the induced position and type of stall inception and the inducement mechanism of rotating stall, which are the same as the axial fan with normal blade angle. Moreover, the single blade with abnormal deviation angle has important impacts on the 3D unsteady evolution process from stall inception to stall cell formation in two rotors.


2010 ◽  
Vol 132 (12) ◽  
Author(s):  
Pramod B. Salunkhe ◽  
A. M. Pradeep

The present paper describes the use of Morlet wavelet transform in understanding the stall inception mechanism in a single stage axial flow fan. Unsteady pressure data from wall mounted sensors were used in the wavelet transforms. This paper was carried out under undistorted and distorted inflow conditions as well as for slow throttle closure and throttle ramping. It was observed from the wavelet transforms that the stall inception under clean inflow (undistorted) and counter-rotating inflow distortions (in the direction opposing the rotor rotation) incur through short length-scale disturbances and through long length-scale disturbances under static and co-rotating inflow distortions (in the same direction of rotor rotation). Modal activity was observed to be insignificant under clean inflow while under static inflow distortion, long length-scale disturbances evolved due to interaction between rotor blades and the distorted sector, especially near the trailing edge of the distortion screen. The presence of a strong mode was observed under both co- and counter-rotating inflow distortions. With throttle ramping, stall inception occurs through long and short length-scale disturbances under co- and counter-rotating inflow distortions, respectively. Some preliminary flow characteristics were studied using a seven hole probe. A significant increase in flow angle and decrease in axial flow coefficient close to the rotor tip were observed under co-rotating inflow distortion as compared with counter-rotating inflow distortion.


2017 ◽  
Vol 5 (1) ◽  
pp. 35-42
Author(s):  
Ali Arshad ◽  
Li Qiushi

Abstract The rotating stall inception data analysis using Analytic Wavelet Transform (AWT) in a low-speed axial compressor was presented in the authors’ previous studies [1], [2]. These studies focused on the detection of instability inception in an axial flow compressor when it enters into the instability regime due to the modal type of stall perturbation. In this paper, the effectiveness of AWT is further studied by applying it under different testing conditions. In order to examine the results of AWT on highly sampled data, at first, the stall data were acquired at a high sampling frequency and the results were compared with the conventional filtered signals. Secondly, the AWT analysis of stall data was carried out for the condition when compressor experienced a spike type rotating stall disturbance. The stall inception information obtained from the AWT analysis was then compared with the commonly used stall detection techniques. The results show that AWT is equally beneficial for the diagnostic of compressor instability regardless of the data sampling rate and represents an outstanding ability to detect stall disturbance irrespective of the type of stall precursor, i.e. the modal wave or spike.


PLoS ONE ◽  
2020 ◽  
Vol 15 (11) ◽  
pp. e0242014
Author(s):  
Murugappan Murugappan ◽  
Waleed Alshuaib ◽  
Ali K. Bourisly ◽  
Smith K. Khare ◽  
Sai Sruthi ◽  
...  

Parkinson’s disease (PD) is a severe incurable neurological disorder. It is mostly characterized by non-motor symptoms like fatigue, dementia, anxiety, speech and communication problems, depression, and so on. Electroencephalography (EEG) play a key role in the detection of the true emotional state of a person. Various studies have been proposed for the detection of emotional impairment in PD using filtering, Fourier transforms, wavelet transforms, and non-linear methods. However, these methods require a selection of basis and are confined in terms of accuracy. In this paper, tunable Q wavelet transform (TQWT) is proposed for the classification of emotions in PD and normal controls (NC). EEG signals of six emotional states namely happiness, sadness, fear, anger, surprise, and disgust are studied. Power, entropy, and statistical moments based features are elicited from the highpass and lowpass sub-bands of TQWT. Six features selected by statistical analysis are classified with a k-nearest neighbor, probabilistic neural network, random forest, decision tree, and extreme learning machine. Three performance measures are obtained, maximum mean accuracy, sensitivity, and specificity of 96.16%, 97.59%, and 88.51% for NC and 93.88%, 96.33%, and 81.67% for PD are achieved with a probabilistic neural network. The proposed method proved to be very effective such that it classifies emotions in PD and could be used as a potential tool for diagnosing emotional impairment in hospitals.


Author(s):  
Jeong-Seek Kang ◽  
Sung-Kook Cho ◽  
Shin-Hyoung Kang

The aim of this paper is to understand the time averaged pressure field and unsteady pressure patterns in a high speed centrifugal compressor channel diffuser. Pressure distributions from the impeller exit to the channel diffuser exit are measured and discussed for various flow conditions. Unsteady pressure signals from six fast-response sensors in the channel diffuser are analyzed by decomposition method and wavelet transform. Measured results are shown for various operating condition from choke to surge that the effect of operating condition is well discussed. The strong non-uniformity in the pressure distribution is obtained over the diffuser shroud wall caused by the impeller-diffuser interaction. As the flow rate increases, flow separation near the throat, due to large incidence angle, increases aerodynamic blockage and reduces the aerodynamic flow area downstream. Thus the minimum pressure location occurs downstream of the geometric throat, and it is named as the aerodynamic throat. And at choke condition, normal shock occurs downstream of this aerodynamic throat. The variation in the location of the aerodynamic throat is discussed. The pressure ratio waveforms by blade passing show regular oscillation not only for the normal but also for the surge conditions and the high frequency fluctuations are superposed on the oscillating pressure waveform as the flow rate increases. Periodic unsteadiness by blade passing does not decay in the diffuser channel. It depends on the operating point and is generally larger in the channel than in the vaneless space. Aperiodic unsteadiness rapidly decrease downstream of diffuser channel. At surge, the spectrum becomes broad banded with peaks at the surge frequency as well as blade passage frequency and the impeller rotating frequency. The surge signal was analyzed using wavelet transform and it is found that surge signal is composed of not only surge scale and blade scale but also multi-scale aperiodic waves. The broadband spectrum in surge condition is due to this multi-scale aperiodic waves.


1978 ◽  
Vol 100 (4) ◽  
pp. 664-675 ◽  
Author(s):  
S. Fleeter ◽  
R. L. Jay ◽  
W. A. Bennett

An experimental investigation was conducted to determine the fluctuating pressure distribution on a stationary vane row, with the primary source of excitation being the wakes from the upstream rotor blades. This was accomplished in a large scale, low speed, single stage research compressor. The forcing function, the velocity defect created by the rotor wakes, was measured with a crossed hot-wire probe. The aerodynamic response on the vanes was measured by means of flush mounted high response dynamic pressure transducers. The dynamic data were analyzed to determine the chordwise distribution of the dynamic pressure coefficient and aerodynamic phase lag as referenced to a transverse gust at the vane leading edge. Vane suction and pressure surface data as well as the pressure difference across the vane were obtained for reduced frequency values ranging from 3.65 to 16.80 and for an incidence angle range of 35.5 deg. The pressure difference data were correlated with a state-of-the-art aerodynamic cascade transverse gust analysis. The correlation was quite good for all reduced frequency values for small values of incidence. For the more negative incidence angle data points, it was shown that a convected wake phenomena not modeled in the analysis existed. Both the first and second harmonic unsteady pressure differential magnitude data decrease in the chordwise direction. The second harmonic magnitude data attains a value very nearly zero at the vane trailing edge transducer location, while the first harmonic data is still finite, albeit small, at this location. That the magnitude of the unsteady pressure differential data approaches zero near to the trailing edge, particularly the second harmonic data which has reduced frequency values to 16.8, is significant in that it reflects upon the validity of the Kutta condition for unsteady flows.


Aerospace ◽  
2021 ◽  
Vol 8 (1) ◽  
pp. 12
Author(s):  
Marco Porro ◽  
Richard Jefferson-Loveday ◽  
Ernesto Benini

This work focuses its attention on possibilities to enhance the stability of an axial compressor using a casing treatment technique. Circumferential grooves machined into the case are considered and their performances evaluated using three-dimensional steady state computational simulations. The effects of rectangular and new T-shape grooves on NASA Rotor 37 performances are investigated, resolving in detail the flow field near the blade tip in order to understand the stall inception delay mechanism produced by the casing treatment. First, a validation of the computational model was carried out analysing a smooth wall case without grooves. The comparisons of the total pressure ratio, total temperature ratio and adiabatic efficiency profiles with experimental data highlighted the accuracy and validity of the model. Then, the results for a rectangular groove chosen as the baseline case demonstrated that the groove interacts with the tip leakage flow, weakening the vortex breakdown and reducing the separation at the blade suction side. These effects delay stall inception, improving compressor stability. New T-shape grooves were designed keeping the volume as a constant parameter and their performances were evaluated in terms of stall margin improvement and efficiency variation. All the configurations showed a common efficiency loss near the peak condition and some of them revealed a stall margin improvement with respect to the baseline. Due to their reduced depth, these new configurations are interesting because they enable the use of a thinner light-weight compressor case as is desirable in aerospace applications.


Sign in / Sign up

Export Citation Format

Share Document