Experimental and Numerical Investigation of the Performance Impact of a Heavily Off-Design Inlet Swirl Angle in a Steam Turbine Stage

Author(s):  
Berardo Paradiso ◽  
Giacomo Gatti ◽  
Alessandro Mora ◽  
Vincenzo Dossena ◽  
Lorenzo Arcangeli ◽  
...  

The aim of this work is to provide an insight into the performance reduction of a 1.5 axial steam turbine stage working under extreme incidence conditions at the inlet. In particular, the main object of the study is the propagation of the loss cores across the blade rows, so as to assess how such operating conditions affect the full machine. Experimental data have been used to validate an unsteady three-dimensional numerical simulation, which provided the tools to investigate the flowfield in detail. To do so, the 1.5 turbine stage installed in the Low Speed Test Rig at Politecnico di Milano has been tested with design and off-design inlet conditions by modifying the IGV orientation. The inter-stage flowfield was investigated by traversing pressure probes in three different axial planes, downstream of each blade row. The numerical simulation has been carried out at University of Florence. The experimental data from probes traversing was used as boundary conditions so as to match as closely as possible the actual operative parameters of the stage. Data from flange-to-flange measurements on the test rig were also used to compare the stage efficiency. After the successful validation of the numerical results, the loss cores propagation study itself was carried out. Using CFD results, the unsteady nature of the separation occurring on the first stator in off-design condition is investigated. Subsequently, a detailed analysis of the propagation of the loss cores is presented, including loss coefficients calculation and entropy trends along the machines axial coordinate. The main outcome is that at the machine exit the loss structures appear to be mainly mixed out and, therefore, subsequent stages would operate under conditions not far from the nominal ones.

Author(s):  
H. X. Liang ◽  
Q. W. Wang ◽  
L. Q. Luo ◽  
Z. P. Feng

Three-dimensional numerical simulation was conducted to investigate the flow field and heat transfer performance of the Cross-Wavy Primary Surface (CWPS) recuperators for microturbines. Using high-effective compact recuperators to achieve high thermal efficiency is one of the key techniques in the development of microturbine in recent years. Recuperators need to have minimum volume and weight, high reliability and durability. Most important of all, they need to have high thermal-effectiveness and low pressure-losses so that the gas turbine system can achieve high thermal performances. These requirements have attracted some research efforts in designing and implementing low-cost and compact recuperators for gas turbine engines recently. One of the promising techniques to achieve this goal is the so-called primary surface channels with small hydraulic dimensions. In this paper, we conducted a three-dimensional numerical study of flow and heat transfer for the Cross-Wavy Primary Surface (CWPS) channels with two different geometries. In the CWPS configurations the secondary flow is created by means of curved and interrupted surfaces, which may disturb the thermal boundary layers and thus improve the thermal performances of the channels. To facilitate comparison, we chose the identical hydraulic diameters for the above four CWPS channels. Since our experiments on real recuperators showed that the Reynolds number ranges from 150 to 500 under the operating conditions, we implemented all the simulations under laminar flow situations. By analyzing the correlations of Nusselt numbers and friction factors vs. Reynolds numbers of the four CWPS channels, we found that the CWPS channels have superior and comprehensive thermal performance with high compactness, i.e., high heat transfer area to volume ratio, indicating excellent commercialized application in the compact recuperators.


1993 ◽  
Vol 115 (1) ◽  
pp. 128-136 ◽  
Author(s):  
J. Zeschky ◽  
H. E. Gallus

Detailed measurements have been performed in a subsonic, axial-flow turbine stage to investigate the structure of the secondary flow field and the loss generation. The data include the static pressure distribution on the rotor blade passage surfaces and radial-circumferential measurements of the rotor exit flow field using three-dimensional hot-wire and pneumatic probes. The flow field at the rotor outlet is derived from unsteady hot-wire measurements with high temporal and spatial resolution. The paper presents the formation of the tip clearance vortex and the passage vortices, which are strongly influenced by the spanwise nonuniform stator outlet flow. Taking the experimental values for the unsteady flow velocities and turbulence properties, the effect of the periodic stator wakes on the rotor flow is discussed.


Author(s):  
Mohammad R. Saadatmand

The aerodynamic design process leading to the production configuration of a 14 stage, 16:1 pressure ratio compressor for the Taurus 70 gas turbine is described. The performance of the compressor is measured and compared to the design intent. Overall compressor performance at the design condition was found to be close to design intent. Flow profiles measured by vane mounted instrumentation are presented and discussed. The flow through the first rotor blade has been modeled at different operating conditions using the Dawes (1987) three-dimensional viscous code and the results are compared to the experimental data. The CFD prediction agreed well with the experimental data across the blade span, including the pile up of the boundary layer on the corner of the hub and the suction surface. The rotor blade was also analyzed with different grid refinement and the results were compared with the test data.


Author(s):  
Juri Bellucci ◽  
Filippo Rubechini ◽  
Andrea Arnone

This work aims at investigating the impact of partial admission on a steam turbine stage, focusing on the aerodynamic performance and the mechanical behavior. The partialized stage of a small steam turbine was chosen as test case. A block of nozzles was glued in a single “thick nozzle” in order to mimic the effect of a partial admission arc. Numerical analyses in full and in partial admission cases were carried out by means of three-dimensional, viscous, unsteady simulations. Several cases were tested by varying the admission rate, that is the length of the partial arc, and the number of active sectors of the wheel. The goal was to study the effect of partial admission conditions on the stage operation, and, in particular on the shape of stage performance curves as well as on the forces acting on bucket row. First of all, a comparison between the flow field of the full and the partial admission case is presented, in order to point out the main aspects related to the presence of a partial arc. Then, from an aerodynamic point of view, a detailed discussion of the modifications of unsteady rows interaction (potential, shock/wake), and how these ones propagate downstream, is provided. The attention is focused on the phenomena experienced in the filling/emptying region, which represent an important source of aerodynamic losses. The results try to deepen the understanding in the loss mechanisms involved in this type of stage. Finally, some mechanical aspects are addressed, and the effects on bucket loading and on aeromechanical forcing are investigated.


Author(s):  
Carl M. Sangan ◽  
Kunyuan Zhou ◽  
J. Michael Owen ◽  
Oliver J. Pountney ◽  
Mike Wilson ◽  
...  

This paper describes a new research facility which experimentally models hot gas ingestion into the wheel-space of an axial turbine stage. Measurements of CO2 gas concentration in the rim-seal region and inside the cavity are used to assess the performance of two generic (though engine-representative) rim-seal geometries in terms of the variation of concentration effectiveness with sealing flow rate. The variation of pressure in the turbine annulus, which governs this externally-induced (EI) ingestion, was obtained from steady pressure measurements downstream of the vanes and near the rim seal upstream of the rotating blades. Although the ingestion through the rim seal is a consequence of an unsteady, three-dimensional flow field and the cause-effect relationship between pressure and the sealing effectiveness is complex, the experimental data is shown to be successfully calculated by simple effectiveness equations developed from a previously published orifice model. The data illustrate that, for similar turbine-stage velocity triangles, the effectiveness can be correlated using a non-dimensional sealing parameter, Φo. In principle, and within the limits of dimensional similitude, these correlations should apply to a geometrically-similar engine at the same operating conditions. Part 2 of this paper describes an experimental investigation of rotationally-induced (RI) ingress, where there is no mainsteam flow and consequently no circumferential variation of external pressure.


Energies ◽  
2020 ◽  
Vol 13 (4) ◽  
pp. 926
Author(s):  
Fushou Xie ◽  
Siqi Xia ◽  
Erfeng Chen ◽  
Yanzhong Li ◽  
Hongwei Mao ◽  
...  

The hydrodynamic information of liquid oxygen in the conveying pipeline of cryogenic launch vehicles directly determines the reliability of the operation of the turbopump. A 0.09 MPa anomalous pressure fall phenomenon in the feeding system has been observed during the flight and run test of a cryogenic rocket with four parallel engines. In previous work, we set up a full-scale experimental system with liquid oxygen as media. The anomalous pressure fall was successfully reproduced. Experimental studies of this phenomenon suggest that the problem might be associated with vortices into the five-way spherical cavity structure. The objective of this study was to determine the three-dimensional instability flow by computational methods to identify and better understand the anomalous pressure fall phenomenon. A numerical model developed by the turbulent conservation equations was validated by experimental data. The generation and evolution of vortices into the five-way spherical cavity of feeding pipelines was captured. It was found that the root cause of the instability flow causing the unusual pressure fall is the formation of a spindle-like vortex into the five-way spherical cavity due to disturbance of the inlet liquid oxygen. The results showed that there is a mirror-symmetrical four-vortices structure in the absence of disturbance, in which the liquid oxygen pressure fall with the rise of the Reynolds number is in good agreement with the predicting values calculated by a set of traditional empirical correlations. In the case of the specific operating conditions, it is also consistent with the experimental results. When the disturbance occurs at the inlet of the spherical cavity, the mirror-symmetrical four-vortices structure gradually evolves into the mirror-symmetrical two-vortices structure. When the disturbance is further enhanced, the mirror-symmetrical two-vortices structure merge with each other to form a spindle-like vortex, which is similar to the Rankine vortex structure. The pressure fall on the corresponding side of the spindle-like vortex core reduces abnormally, and is about 0.07 MPa, which is consistent with the experimental data under certain disturbance conditions. Moreover, it was found that the spindle-like vortex is a stable eddy structure, and would continue to exist once it is formed, which could also not disappear with the removal of the disturbance.


Author(s):  
A. S. Banwatt ◽  
R. G. Sauve´

The complex calandria tube to calandria tubesheet roller-expanded joint in CANDU nuclear reactors is usually qualified by test. In this paper, a state-of-the-art numerical simulation is undertaken in order to improve the understanding of the behaviour of the joint to support design modifications and provide assurance that the test rig envelopes behaviour of the in-situ reactor assembly. Parameters such as hoop stress, and plastic deformation of the assembly are predicted. The analysis results are also compared with the available test data and in-situ experimental data. The analysis results show that the test performed to qualify the joint using a small plate and single joint is representative of the in-situ reactor configuration.


1988 ◽  
Vol 110 (3) ◽  
pp. 303-311 ◽  
Author(s):  
C. Hah ◽  
A. C. Bryans ◽  
Z. Moussa ◽  
M. E. Tomsho

Three-dimensional flowfields in a centrifugal impeller with backswept discharge at various operating points have been numerically investigated with a three-dimensional viscous flow code. Numerical results and experimental data were compared for the detailed flowfields and overall performance of the impeller at three operating conditions (optimum efficiency, choke, and near-surge conditions). The comparisons indicate that for engineering applications the numerical solution accurately predicts various complex real flow phenomena. The overall aerodynamic performance of the impeller is also well predicted at design and off-design conditions.


Author(s):  
Kai Wang ◽  
Houlin Liu ◽  
Shouqi Yuan ◽  
Minggao Tan ◽  
Yong Wang ◽  
...  

A double blades pump is widely used in sewage treatment industry, while at present the research on the internal flow characteristics of the double blades pump is very few. So, the CFD technology and the stereo PIV test technique are applied to study the inner flow in a double blades pump whose specific speed is 110.9. The commercial code FLUENT is used to simulate the inner flow in the double blades pump at 0.6Qd, 0.8Qd, 1.0Qd, 1.2Qd and 1.4Qd. The RNG k-ε turbulence model and SIMPLEC algorithm are used in FLUENT. According to the results of the three-dimensional steady numerical simulation, the distributions of velocity field in the impeller are obtained at the five different operating conditions. The analysis of the numerical simulation results shows that there is an obvious vortex in the impeller passage at off-design conditions. But the number, location and area of the vortex are different from each operation condition. In order to validate CFD simulation results, the stereo PIV is used to test the absolute velocity distribution in the double blades pump at Jiangsu University. The distributions of three-dimensional absolute velocity field at the above five different operating conditions are obtained by the PIV test, and the measured results are compared with the CFD simulation results. The comparison indicates that there are vortexes in impeller passages of the double blades pump under the five operating conditions. But as to the area of the vortex and the relative velocity values of the vortex core, there are some differences between the experiment results and the numerical simulation results. The research work can be applied to instruct the hydraulic design of double blades pumps.


Sign in / Sign up

Export Citation Format

Share Document