Numerical Investigation of Axial Thrust Control in a Multistage Canned-Motor Pump With Pump-Out-Vanes

2021 ◽  
Author(s):  
Yintao Wang ◽  
Min Zhang ◽  
Abhay Patil ◽  
Gerald Morrison

Abstract Axial thrust is one of the critical factors that affect the pump’s continuously operating reliability. Among all the available methods for axial thrust controlling, Pump Out Vanes (POVs) are an easy and effective way. Different from a single-stage pump with a scroll, an in-line multistage pump will have a leakage flow channel from the return channel. With this leakage channel, the working environment of the POVs will be significantly different from a single-stage pump. In this paper, the first stage of a multistage pump with both POVs and casing ribs (vortex breakers) is studied by CFD simulation to evaluate their effect on the axial thrust, pump stage performance, and the internal leakage flow. Because of the similar POV working environment in the multistage pump, the conclusion from one stage can be generalized for the rest stages. In this study, 5 models with different POV outer radius and height are simulated in Ansys Fluent with k-ε turbulence model and transient rotor-stator sliding mesh method. The results show that POVs with suitable geometry can provide good axial thrust control over a wide pump operating range while the stage efficiency can be strongly affected due to the increased turbulence and interstage leakage flow, which is contradicting some previous researcher’s conclusion based on the study of a single-stage centrifugal pump.

Author(s):  
Anil Kumar ◽  
Virendra Kumar ◽  
PMV Subbarao ◽  
Surendra K Yadav ◽  
Gaurav Singhal

The two-stage ejector has been suggested to replace the single-stage ejector geometrical configuration better to utilize the discharge flow’s redundant momentum to induce secondary flow. In this study, the one-dimensional gas dynamic constant rate of momentum change theory has been utilized to model a two-stage ejector along with a single-stage ejector. The proposed theory has been utilized in the computation of geometry and flow parameters of both the ejectors. The commercial computational fluid dynamics tool ANSYS-Fluent 14.0 has been utilized to predict performance and visualize the flow. The performance in terms of entrainment ratio has been compared under on- design and off-design conditions. The result shows that the two-stage ejector configuration has improved (≈57%) entrainment capacity than the single-stage ejector under the on-design condition.


2020 ◽  
Vol 310 ◽  
pp. 00039
Author(s):  
Kamila Kotrasova ◽  
Vladimira Michalcova

The numerical simulation of flow process and heat transfer phenomena demands the solution of continuous differential equation and energy-conservation equations coupled with the continuity equation. The choosing of computation parameters in numerical simulation of computation domain have influence on accuracy of obtained results. The choose parameters, as mesh density, mesh type and computation procedures, for the numerical diffusion of computation domain were analysed and compared. The CFD simulation in ANSYS – Fluent was used for numerical simulation of 3D stational temperature flow of the computation domain.


2016 ◽  
Vol 842 ◽  
pp. 164-177 ◽  
Author(s):  
Indra Djodikusumo ◽  
I. Nengah Diasta ◽  
Iwan Sanjaya Awaluddin

This paper aims to demonstrate how to model, mesh and simulate a hydraulic propeller turbine runner based on the geometrical specification of the runner blade. Modeling process is divided into preparation and implementation phase. Preparation phase illustrates how to develop stream surfaces and passages, how to create and transform meanline and how to create an rtzt file. The profile in rtzt file has a certain fix thickness which has to be altered later. Implementation phase describes operations necessary in creating a propeller runner model in ANSYS BladeGen which consist of importing rtzt file, modifying the trailing edge properties and altering profile thickness distribution to that of 4 digits NACA airfoil standard. Grid is generated in ANSYS TurboGrid utilizing ATM Optimized topology. CFD simulation is done using the ANSYS Fluent with pressure inlet and pressure outlet boundary conditions and k-ε turbulence model. Hydraulic efficiency of the runner is calculated utilizing Turbo Topology module in ANSYS Fluent. The authors will share the advantages that may be obtained by using ANSYS BladeGen compared with the use of general CAD Systems.


2019 ◽  
Vol 6 (3) ◽  
Author(s):  
Anastasiya Shustikova ◽  
Andrei Kozichev ◽  
Sergei Paryshev ◽  
Konstantin Strelkov

Recently, long span bridge construction has been demanded for development of the regions of the Russian Federation. In terms of economy, it’s useful to build a combined road-railway bridge. Such bridges, generally, constitute a metal cross-cutting girder with carriageways on lower, upper or both zones of the girder. The major advantages of combined bridges are high strength and load capacity, plus cross-cutting to wind load. Focus of this research is a combined road-railway bridge over the Ob river at the stage of assembling and operation. The purpose of the study was to determine the limits of aeroelastic stability of combined road-railway bridge at the stage of assembling and operation using numerical simulation. To better understand the bridges behaviour in air flow, flow around a section model has been researched with CFD simulation in the ANSYS FLUENT. Then based on the given results of the calculations the dependence of the bridge vibrations on wind speed within a specified range is obtained, and also values of drag coefficient Сх, lift coefficient Су and torque coefficient Мz are received. These studies were carried out in the range of angles of attack α = ±3°. The possibility of divergence and galloping was also estimated. The results of the study made it possible to estimate the influence of air flow on combined bridge cross-cutting girder. Overall, the conducted research seems promising for further investigation and development in the field of bridge aeroelasticity.


Author(s):  
V. A. Karkoulias ◽  
P. E. Marazioti ◽  
D. P. Georgiou ◽  
E. A. Maraziotis

This paper investigates how the structure of the flow field and the vertical distribution of the pollutant concentration near the wall facades of street canyons are affected by the presence of some elements such as street level galleries. Numerical results are presented for various gallery geometries in combination with facade roughness elements (balconies) for a canyon of an aspect ratio equal to h/w=2.33. The results were obtained by a Computational Fluid Dynamics (CFD) simulation employing the ANSYS-FLUENT suite that incorporated the k-e turbulent (RNG) model. The simulation generated several flow structures inside the canyon (mainly vortices), whose characteristic properties (e.g. number, strength and size) are discussed in terms of the effect of the galleries on the flow field structure and the roughness generated by the building façade balconies. The results indicate a significant influence on both the flow field structure and the mass concentration distribution of the polluting particles.


2021 ◽  
Vol 850 (1) ◽  
pp. 012026
Author(s):  
J Kevin Joseph ◽  
R Jeyanthinathan ◽  
R Harish

Abstract A Tesla turbine is a bladeless turbine in which fluid flows in the direction of the centripetal path. It uses fluid properties such as Boundary layer & adhesion of fluid on a series of discs keyed to a shaft. The initial cost and maintenance cost of the Tesla turbine is very low. Our project’s main motive is to improve the performance of a Tesla turbine by changing various parameters such as disc diameter and disc rotating speed through the CFD simulation software using water as a working fluid. The CAD model is designed using Ansys design modeler, meshing is performed using Ansys meshing and post processing is carried out in Ansys fluent. The numerical simulations were carried out using Ansys Fluent which is based on the finite volume method and the changes that occurred in the pressure and velocities are investigated. The parametric study is performed by varying the turbine disc speed. By performing CFD simulations, total pressure contour and velocity magnitude contours are plotted and it is found that pressure and velocity are maximum when the clearance between disc and turbine casing is lesser and at higher turbine disc speeds. The power output of the Tesla turbine is also plotted for various rpm where higher rpm gives maximum power output. The results from the present study would be useful in designing an efficient Tesla turbine with improved performance.


2019 ◽  
Vol 67 (5) ◽  
pp. 394-403
Author(s):  
Viktor Józsa ◽  
Gergely Novotni

Lean swirl combustion is the leading burner concept today, used in several steadyoperating applications to ensure awide operating range and low pollutant emissions. Approaching lean blowout is highly desired by design to achieve the lowest possible NOX emission. It was shown earlier that quarls could significantly extend the operating regime of liquid-fueled swirl burners. In the present study, the accompanying acoustic noise is evaluated by continuous wavelet transformation to show the effect of various quarl geometries on lean flame blowout. However, the desired flame shape of swirl burners is V, first, and a straight flame, and then a transitory regime can be observed before the developed V-shaped flame through increasing the swirl number. If the axial thrust is excessive, blowout might occur in earlier stages. Presently, the characteristic bands before blowout were analyzed and evaluated at various quarl geometries, swirl numbers, and atomizing pressures. The latter parameter also acts as an axial thrust control to adjust the swirl number. firstly, a straight flame, then a transitory regime can be observed before the developed V-shaped flame through increasing the swirl number. If the axial thrust is excessive, blowout might occur in earlier stages. Presently, the characteristic bands before blowout were analyzed and evaluated at various quarl geometries, swirl numbers, and atomizing pressures. The latter parameter also acts as an axial thrust control to adjust the swirl number.


2017 ◽  
Vol 139 (5) ◽  
Author(s):  
Prachi R. Prabhukhot ◽  
Aditya R. Prabhukhot

The power generated in wind turbine depends on wind speed and parameters of blade geometry like aerofoil shape, blade radius, chord length, pitch angle, solidity, etc. Aerofoil selection is the crucial factor in establishing the efficient wind turbine. More than one aerofoil in a blade can increase the efficiency further. Previous studies of different aerofoils have shown that efficiency of small scale wind turbine increases when NREL S822 aerofoil is used for wind speed on and above 10 m/s. This paper introduces a study on effect of low wind speed (V = 5 m/s) on performance of blade profile. Aerofoils NREL S822/S823 are used for microwind turbine with S823 near root and S822 near tip. Blade of 3 m radius with spherical tubercles over entire span is analyzed considering 5 deg angle of attack. The computational fluid dynamics (CFD) simulation was carried out using ANSYS fluent to study the behavior of blade profile at various contours. The study shows that blade experiences maximum turbulence and minimum pressure near trailing edge of the tip of blade. The region also experiences maximum velocity of the flow. These factors result in pushing the aerofoil in upward direction for starting the wind turbine to rotate at the speed as low as 5 m/s.


Author(s):  
Mahbub Ahmed ◽  
Cheng Zhang ◽  
Scott McKay ◽  
Vivek Shirsat ◽  
Jobaidur Khan

Hydrocarbon-based miniature power generators are promising any many application since hydrocarbon based fuels have higher power densities compared to conventional lithium batteries. A 40mm long meso-combustor of two different configurations, two-inlet and three-inlet, were used to investigate the combustion of methane in the meso-chamber. A non-premixed combustion of methane and oxygen was simulated numerically using a steady laminar flamelet model. The mesh generation and the CFD simulation were performed using ANSYS FLUENT software. A a finite volume approach was used for the simulation. The fuel-oxidizer mixing, thermal behavior and fuel burning efficiency were studied. An adequate mixing that supports the combustion was observed in certain locations. The exhaust gas was analyzed experimentally. The temperature distributions were also observed to predict the flame locations. According to the numerical analysis it was apparent that the flame would be anchored in the well mixed regions of the chamber the flames were found to be attached in two distinct locations. One in the upstream zone and the other one in the downstream zone. Another important finding was that the fuel lean condition produced higher efficiency than the fuel rich condition.


Energies ◽  
2019 ◽  
Vol 12 (23) ◽  
pp. 4512
Author(s):  
Michalina Kurkus-Gruszecka ◽  
Piotr Krawczyk

In the article the computational fluid dynamics (CFD) simulation and calculated operational parameters of the single stage low-pressure rotary lobe expander compared with the values obtained from a different geometry simulation are presented. Low-pressure rotary lobe expanders are rotary engines that use a compressed gas to produce mechanical energy, which in turn can be converted into another form, i.e., electric energy. Currently, expanders are used in narrow areas, but have a large potential in the energy production from gases of low thermodynamic parameters. The first geometry model was designed on the basis of an industrial device and validated with the empirical data. Simulation of the second geometry was made based on a validated model in order to estimate the operational parameters of the device. The CFD model included the transient simulation of compressible fluid in the geometry changing over time and the rotors motion around two rotation axes. The numerical model was implemented in ANSYS CFX software. After obtaining simulation results in the form of parameters monitors for each time step, a number of calculations were performed using a written code analysing the CFD program output files. The article presents the calculation results and the geometries comparison in terms of work efficiency. The research indicated that the construction of the device on a small scale could cause a significant decrease in the aforementioned parameter, caused by medium leaks in the expander clearances.


Sign in / Sign up

Export Citation Format

Share Document