On Correlating Experimental Pressure Flow and Heat Transfer Measurements From Silicon Microchannels With Theoretical Calculations

Author(s):  
Cormac Eason ◽  
Niall O’Keeffe ◽  
Ryan Enright ◽  
Tara Dalton

The bulk pressure flow and heat transfer characteristics of rectangular and trapezoidal microchannels etched in silicon were measured in the laminar regime. The channel hydraulic diameters were 305 μm for the Deep Reactive Ion Etched (DRIE) etched channel and 317 μm for the wet etched channel and there were 22 channels in each sample. The fluid used was purified degassed water. The inlet and outlet temperature and pressure of the fluid and the wall temperatures of the channels were measured at the inlet and outlet of the channels. Theoretical and experimental results were calculated using fluid properties at the mean fluid temperature for each data point. These were then collapsed to a single curve at constant temperature by multiplying the measured value by the ratio of the relevant fluid properties at the experimental and required temperatures. The cross section of each channel on each channel sample was measured along with the channel height and width to give an area ratio between the actual channel width and the width calculated assuming the channel was perfectly rectangular or trapezoidal. This ratio is used to compensate the theoretical results and improve their correlation with the experiment. The uncertainty in the experimental results was calculated by running the result processing calculations three times, once at nominal values and then shifting input values to their upper and lower limits based on a 95% confidence interval on the standard deviation for each inputted measurement. Theoretical calculations were run for each experimental mass flow rate in order to produce equivalent theoretical points to the experimental values. Uncertainty in the theory is also determined by running the theoretical calculations at upper, lower and nominal 95% confidence interval values for the channels being tested. It was found that while the pressure flow data from the channels matched theoretical trends and that the results for the rectangular DRIE channels showed no experimentally significant deviation from theory, the experimental data from the wet etched trapezoidal channels was lower than predictions. The heat transfer from the channels is strongly affected by the heat transferred to the coolant by the manifolds. When this effect is removed, the experimental Reynolds number Nusselt number plot becomes strongly linear. This does not agree with theoretical predictions.

1997 ◽  
Vol 119 (1) ◽  
pp. 32-39 ◽  
Author(s):  
A. M. Anderson

This paper summarizes computational results for flow and heat transfer over an array ofidealized electronic components and compares them to experimental data. The numerical modeling was performed using a commercial finite control volume computer code (Flotherm1, by Flomerics) and the results are compared to a set of experimental data. The experimental model consists of a uniform array of eight rows by six columns of solid aluminum blocks (9.5 mm high × 46.5 mm wide × 37.5 mm long) mounted on an adiabatic wall of a channel in forced convection flow. Four channel heights (H/B = 1.5–4.6) and a range of inlet velocities (3.0 to 8.1 m/s) were modelled. The flow was modeled as turbulent flow using the κ-ε turbulence model. Data for the adiabatic heat transfer coefficient had, the superposition kernel function g*, and the channel pressure drop ΔP are compared. The computational results for had are in excellent agreement with the experimental data (within about five percent on average). The computationalresults for g* predict the correct trends (roll off with downstream distance, channel height dependence, and velocity independence). However, values are as much as 50 percent higher than the experimental results which means the computational model under-predicts the amount of cross channel mixing. Computational results for ΔP compare reasonably well (within 20 percent on average).


Energies ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 4327
Author(s):  
Min-Seob Shin ◽  
Santhosh Senguttuvan ◽  
Sung-Min Kim

The present study experimentally and numerically investigates the effect of channel height on the flow and heat transfer characteristics of a channel impingement cooling configuration for various jet Reynolds numbers in the range of 2000–8600. A single array consisting of eleven jets with 0.8 mm diameter injects water into the channel with 2 mm width at four different channel heights (3, 4, 5, and 6 mm). The average heat transfer coefficients at the target surface are measured by maintaining a temperature difference between the jet exit and the target surface in the range of 15–17 °C for each channel height. The experimental results show the average heat transfer coefficient at the target surface increases with the jet Reynolds number and decreases with the channel height. An average Nusselt number correlation is developed based on 85 experimentally measured data points with a mean absolute error of less than 4.31%. The numerical simulation accurately predicts the overall heat transfer rate within 10% error. The numerical results are analyzed to investigate the flow structure and its effect on the local heat transfer characteristics. The present study advances the primary understanding of the flow and heat transfer characteristics of the channel impingement cooling configuration with liquid jets.


1990 ◽  
Vol 112 (4) ◽  
pp. 891-898 ◽  
Author(s):  
D. C. Wadsworth ◽  
I. Mudawar

Experiments were performed to investigate single-phase heat transfer from a smooth 12.7 × 12.7 mm2 simulated chip to a two-dimensional jet of dielectric Fluorinert FC-72 liquid issuing from a thin rectangular slot into a channel confined between the chip surface and nozzle plate. The effects of jet width, confinement channel height, and impingement velocity have been examined. Channel height had a negligible effect on the heat transfer performance of the jet for the conditions of the present study. A correlation for the convective heat transfer coefficient is presented as a function of jet width, heater length, flow velocity, and fluid properties. A self-contained multichip cooling module consisting of a 3 × 3 array of heat sources confirmed the uniformity and predictability of cooling for each of the nine chips, and proved the cooling module is well suited for packaging large arrays of high-power density chips.


2013 ◽  
Vol 17 (4) ◽  
pp. 1093-1106 ◽  
Author(s):  
Soraya Trabelsi ◽  
Wissem Lakhal ◽  
Ezeddine Sediki ◽  
Mahmoud Moussa

Combined convection and radiation in simultaneously developing laminar flow and heat transfer is numerically considered with a discrete-direction method. Coupled heat transfer in absorbing emitting but not scattering gases is presented in some cases of practical situations such as combustion of natural gas, propane and heavy fuel. Numerical calculations are performed to evaluate the thermal radiation effects on heat transfer through combustion products flowing inside circular ducts. The radiative properties of the flowing gases are modeled by using the absorption distribution function (ADF) model. The fluid is a mixture of carbon dioxide, water vapor, and nitrogen. The flow and energy balance equations are solved simultaneously with temperature dependent fluid properties. The bulk mean temperature variations and Nusselt numbers are shown for a uniform inlet temperature. Total, radiative and convective mean Nusselt numbers and their axial evolution for different gas mixtures produced by combustion with oxygen are explored.


Author(s):  
Huayi Feng ◽  
Yanping Zhang ◽  
Chongzhe Zou

In this paper, a 3-D numerical model is proposed to investigate the capability of generating high operating temperature for a modified solar cavity receiver in large-scale dish Stirling system. The proposed model aims to evaluate the influence of radiation intensity on the cavity receiver performance. The properties of the heat transfer fluid in the pipe and heat transfer losses of the receiver are investigated by varying the direct normal irradiance from 400W/m2 to 1000W/m2. The temperature of heat transfer fluid, as well as the effect of radiation intensity on the heat transfer losses have been critically presented and discussed. The simulation results reveal that the heat transfer fluid temperature and thermal efficiency of the receiver are significantly influenced by different radiation flux. With the increase of radiation intensity, the efficiency of the receiver will firstly increase, then drops after reaching the highest point. The outlet working fluid temperature of the pipe will be increased consistently. The results of the simulations show that the designed cylindrical receiver used in dish Stirling system is capable to achieve the targeted outlet temperature and heat transfer efficiency, with an acceptable pressure drop.


Author(s):  
Ainul Haque ◽  
Ameeya Kumar Nayak

In this paper, a mathematical model has been developed to analyze the combined electroosmotic and pressure driven flow of power law fluids in a micro channel in the presence of Joule heating effects. The effects of Navier slip boundary condition and thermal radiation is examined for effective heat transfer in a hydrophobic microchannel. The analytical treatment has been performed for fluid flow and heat transfer effects in terms of flow governing parameters. This study highlights the effect of channel height to the electric double layer thickness and observed the flow variation due to heat transfer effect with the available scientific data. For a pure EOF, velocity slip have more significant role to get a maximum flow rate as expected. For both pseudo-plastic and dilatent fluids Nusselt number is decreased with the increment of the hydrophobic parameter and dimensionless pressure gradient where as increment in Joule heating effect enhance the heat transfer rate.


2015 ◽  
Vol 7 (3) ◽  
pp. 369-386 ◽  
Author(s):  
K. Vajravelu ◽  
K. V. Prasad ◽  
S. R. Santhi

AbstractAn analysis is carried out to study the magnetohydrodynamic (MHD) flow and heat transfer characteristics of an electrically conducting dusty non-Newtonian fluid, namely, the upper convected Maxwell (UCM) fluid over a stretching sheet. The stretching velocity and the temperature at the surface are assumed to vary linearly with the distance from the origin. Using a similarity transformation, the governing nonlinear partial differential equations of the model problem are transformed into coupled non-linear ordinary differential equations and the equations are solved numerically by a second order finite difference implicit method known as the Keller-box method. Comparisons with the available results in the literature are presented as a special case. The effects of the physical parameters on the fluid velocity, the velocity of the dust particle, the density of the dust particle, the fluid temperature, the dust-phase temperature, the skin friction, and the wall-temperature gradient are presented through tables and graphs. It is observed that, Maxwell fluid reduces the wall-shear stress. Also, the fluid particle interaction reduces the fluid temperature in the boundary layer. Furthermore, the results obtained for the flow and heat transfer characteristics reveal many interesting behaviors that warrant further study on the non-Newtonian fluid flow phenomena, especially the dusty UCM fluid flow phenomena.


Author(s):  
Ki Wook Jung ◽  
Hyoungsoon Lee ◽  
Chirag Kharangate ◽  
Feng Zhou ◽  
Mehdi Asheghi ◽  
...  

Abstract High performance and economically viable thermal cooling solutions must be developed to reduce weight and volume, allowing for a wide-spread utilization of hybrid electric vehicles. The traditional embedded microchannel cooling heat sinks suffer from high pressure drop due to small channel dimensions and long flow paths in 2D-plane. Utilizing direct “embedded cooling” strategy in combination with top access 3D-manifold strategy reduces the pressure drop by nearly an order of magnitude. In addition, it provides more temperature uniformity across large area chips and it is less prone to flow instability in two-phase boiling heat transfer. Here, we present the experimental results for single-phase thermofluidic performance of an embedded silicon microchannel cold-plate bonded to a 3D manifold for heat fluxes up to 300 W/cm2 using single-phase R-245fa. The heat exchanger consists of a 52 mm2 heated area with 25 parallel 75 × 150 μm2 microchannels, where the fluid is distributed by a 3D-manifold with 4 micro-conduits of 700 × 250 μm2. Heat is applied to the silicon heat sink using electrical Joule-heating in a metal serpentine bridge and the heated surface temperature is monitored in real-time by Infra-red (IR) camera and electrical resistance thermometry. The experimental results for maximum and average temperatures of the chip, pressure drop, thermal resistance, average heat transfer coefficient for flow rates of 0.1, 0.2. 0.3 and 0.37 lit/min and heat fluxes from 25 to 300 W/cm2 are reported. The proposed Embedded Microchannels-3D Manifold Cooler, or EMMC, device is capable of removing 300 W/cm2 at maximum temperature 80 °C with pressure drop of less than 30 kPa, where the flow rate, inlet temperature and pressures are 0.37 lit/min, 25 °C and 350 kPa, respectively. The experimental uncertainties of the test results are estimated, and the uncertainties are the highest for heat fluxes < 50 W/cm2 due to difficulty in precisely measuring the fluid temperature at the inlet and outlet of the micro-cooler.


Sign in / Sign up

Export Citation Format

Share Document