Estimation of the Occurrence of Micro-Explosion for the Diesel-Biofuel Multi-Components Droplets

Author(s):  
Cai Shen ◽  
Chia-fon F. Lee ◽  
Way L. Cheng

A numerical study of micro-explosion in multi-component bio-fuel droplets is presented. The onset of micro-explosion is characterized by the normalized onset radius (NOR). Bubble expansion is described by a modified Rayleigh equation. The final breakup is modeled from a surface energy approach by determining the minimal surface energy (MSE). After the breakup, the Sauter mean radius (SMR) for initially small size droplets can be estimated from a look-up table generated from the current breakup model. There exists an optimal droplet size for the onset of micro-explosion. The MSE approach reaches the same conclusion as previous model determining atomization by aerodynamic disturbances. The SMR of secondary droplets can be estimated by the possible void fraction, ε, at breakup and the corresponding surface Weber number, Wes, at the minimal surface energy ratio (MSER). Biodiesel can enhance micro-explosion in the fuel blends of ethanol and diesel (which is represented by a single composition tetradecane). The simulation results show that the secondary atomization of bio-fuel and diesel blends can be achieved by micro-explosion under typical diesel engine operation conditions.

Processes ◽  
2021 ◽  
Vol 9 (5) ◽  
pp. 841
Author(s):  
Yuzhen Jin ◽  
Huang Zhou ◽  
Linhang Zhu ◽  
Zeqing Li

A three-dimensional numerical study of a single droplet splashing vertically on a liquid film is presented. The numerical method is based on the finite volume method (FVM) of Navier–Stokes equations coupled with the volume of fluid (VOF) method, and the adaptive local mesh refinement technology is adopted. It enables the liquid–gas interface to be tracked more accurately, and to be less computationally expensive. The relationship between the diameter of the free rim, the height of the crown with different numbers of collision Weber, and the thickness of the liquid film is explored. The results indicate that the crown height increases as the Weber number increases, and the diameter of the crown rim is inversely proportional to the collision Weber number. It can also be concluded that the dimensionless height of the crown decreases with the increase in the thickness of the dimensionless liquid film, which has little effect on the diameter of the crown rim during its growth.


Energies ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 4136
Author(s):  
Clemens Gößnitzer ◽  
Shawn Givler

Cycle-to-cycle variations (CCV) in spark-ignited (SI) engines impose performance limitations and in the extreme limit can lead to very strong, potentially damaging cycles. Thus, CCV force sub-optimal engine operating conditions. A deeper understanding of CCV is key to enabling control strategies, improving engine design and reducing the negative impact of CCV on engine operation. This paper presents a new simulation strategy which allows investigation of the impact of individual physical quantities (e.g., flow field or turbulence quantities) on CCV separately. As a first step, multi-cycle unsteady Reynolds-averaged Navier–Stokes (uRANS) computational fluid dynamics (CFD) simulations of a spark-ignited natural gas engine are performed. For each cycle, simulation results just prior to each spark timing are taken. Next, simulation results from different cycles are combined: one quantity, e.g., the flow field, is extracted from a snapshot of one given cycle, and all other quantities are taken from a snapshot from a different cycle. Such a combination yields a new snapshot. With the combined snapshot, the simulation is continued until the end of combustion. The results obtained with combined snapshots show that the velocity field seems to have the highest impact on CCV. Turbulence intensity, quantified by the turbulent kinetic energy and turbulent kinetic energy dissipation rate, has a similar value for all snapshots. Thus, their impact on CCV is small compared to the flow field. This novel methodology is very flexible and allows investigation of the sources of CCV which have been difficult to investigate in the past.


Author(s):  
Tong Li ◽  
Yibin Wang ◽  
Ning Zhao

The simple frigate shape (SFS) as defined by The Technical Co-operative Program (TTCP), is a simplified model of the frigate, which helps to investigate the basic flow fields of a frigate. In this paper, the flow fields of the different modified SFS models, consisting of a bluff body superstructure and the deck, were numerically studied. A parametric study was conducted by varying both the superstructure length L and width B to investigate the recirculation zone behind the hangar. The size and the position of the recirculation zones were compared between different models. The numerical simulation results show that the size and the location of the recirculation zone are significantly affected by the superstructure length and width. The results obtained by Reynolds-averaged Navier-Stokes method were also compared well with both the time averaged Improved Delayed Detached-Eddy Simulation results and the experimental data. In addition, by varying the model size and inflow velocity, various flow fields were numerically studied, which indicated that the changing of Reynolds number has tiny effect on the variation of the dimensionless size of the recirculation zone. The results in this study have certain reference value for the design of the frigate superstructure.


Minerals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 631
Author(s):  
Chi Yu ◽  
Runhui Geng ◽  
Xinwen Wang

Vibrating flip-flow screens (VFFS) are widely used to separate high-viscosity and fine materials. The most remarkable characteristic is that the vibration intensity of the screen frame is only 2–3 g (g represents the gravitational acceleration), while the vibration intensity of the screen surface can reach 30–50 g. This effectively solves the problem of the blocking screen aperture in the screening process of moist particles. In this paper, the approximate state of motion of the sieve mat is realized by setting the discrete rigid motion at multiple points on the elastic sieve mat of the VFFS. The effects of surface energy levels between particles separated via screening performance were compared and analyzed. The results show that the flow characteristics of particles have a great influence on the separation performance. For 8 mm particle screening, the particle’s velocity dominates its movement and screening behavior in the range of 0–8 J/m2 surface energy. In the feeding end region (Section 1 and Section 2), with the increase in the surface energy, the particle’s velocity decreases, and the contact time between the particles and the screen surface increases, and so the passage increases. When the surface energy level continues to increase, the particles agglomerate together due to the effect of the cohesive force, and the effect of the particle’s agglomeration is greater than the particle velocity. Due to the agglomeration of particles, the difficulty of particles passing through the screen increases, and the yields of various size fractions in the feeding end decrease to some extent. In the transporting process, the agglomerated particles need to travel a certain distance before depolymerization, and the stronger the adhesive force between particles, the larger the depolymerization distance. Therefore, for the case of higher surface energy, the screening percentage near the discharging end (Section 3 and Section 4) is greater. The above research is helpful to better understand and optimize the screening process of VFFS.


2020 ◽  
Vol 9 (1) ◽  
pp. 27
Author(s):  
Hitoshi Tanaka ◽  
Nguyen Xuan Tinh ◽  
Xiping Yu ◽  
Guangwei Liu

A theoretical and numerical study is carried out to investigate the transformation of the wave boundary layer from non-depth-limited (wave-like boundary layer) to depth-limited one (current-like boundary layer) over a smooth bottom. A long period of wave motion is not sufficient to induce depth-limited properties, although it has simply been assumed in various situations under long waves, such as tsunami and tidal currents. Four criteria are obtained theoretically for recognizing the inception of the depth-limited condition under waves. To validate the theoretical criteria, numerical simulation results using a turbulence model as well as laboratory experiment data are employed. In addition, typical field situations induced by tidal motion and tsunami are discussed to show the usefulness of the proposed criteria.


Author(s):  
Yanxia Li ◽  
Zhongliang Liu ◽  
Yan Wang ◽  
Jiaming Liu

A numerical model on methane/air combustion inside a small Swiss-roll combustor was set up to investigate the flame position of small-scale combustion. The simulation results show that the combustion flame could be maintained in the central area of the combustor only when the speed and equivalence ratio are all within a narrow and specific range. For high inlet velocity, the combustion could be sustained stably even with a very lean fuel and the flame always stayed at the first corner of reactant channel because of the strong convection heat transfer and preheating. For low inlet velocity, small amounts of fuel could combust stably in the central area of the combustor, because heat was appropriately transferred from the gas to the inlet mixture. Whereas, for the low premixed gas flow, only in certain conditions (Φ = 0.8 ~ 1.2 when ν0 = 1.0m/s, Φ = 1.0 when ν0 = 0.5m/s) the small-scale combustion could be maintained.


Author(s):  
Ceng He ◽  
Yuqi Wang ◽  
Jing Song ◽  
Shanshan Li ◽  
Fusheng Yang ◽  
...  

Abstract Metal hydride is an influential and promising material for hydrogen utilization. Researchers have carried out a large number of studies on hydrogen storage apparatus, and developed a few new devices for its promotion. Unfortunately, for most metal hydride reactors, the hydrogenation and dehydrogenation are two independent processes owing to the different required conditions, which could cause many inconveniences and safety problems to the H2 absorption & desorption cycle with high frequency and intensity. Hence we proposed a new type of autoswitch H2 absorption & desorption device based on the structure improvement, which consists of rotation disc, fixed disc and the reactor. The numerical simulation for H2 absorption/desorption using LaNi5 was accomplished, and the optimizations on both structure and operation conditions were achieved within a certain period of cycle time. Simulation results show when the single cycle time is set to 1600 s, the absorption temperature has to be lower than 45 °C (3 MPa) and pressure higher than 1.28 MPa (20 °C), and the desorption temperature should be higher than 41 °C (0.1 MPa) and pressure lower than 0.48 MPa (80 °C) under the same cycle time. Meanwhile, the effects of reaction finish time, operating temperature and H2 pressure during absorption/desorption process was investigated and simulation data were also fitted to develop the structural optimization. Under the hydrogenation/dehydrogenation conditions of 3 MPa (20 °C)/0.1 MPa (80 °C), the simulation results indicate the optimal initial reacted fraction and total cycle time are 0.07 and 1287 s, respectively. Moreover, both structures of autoswitch device with 4 and 6 openings have been optimized to satisfy the requirement of each stage. The autoswitch H2 absorption & desorption device can realize the automatic switch between hydrogenation and dehydrogenation orderly and controllably, which would provide convenience for the occasions with this demand and show its remarkable value during popularization and application.


2021 ◽  
Vol 903 ◽  
pp. 79-89
Author(s):  
R. Sundara Rao ◽  
K. Hemachandra Reddy ◽  
Ch.R. Vikram Kumar

In an internal combustion engine poppet valve is the crucial component which often opens and closes, thereby regulating gas flow in an engine cylinder. During engine operation, the valve is exposed to high temperature gases (thermal load) along with spring and cam loads (mechanical load). Due to high temperatures and fatigue loads, the valves are subjected to metallurgical changes and leads to failure. In order to resist these extreme conditions of high temperature and mechanical loads, the engine valve should possess special properties such as high surface hardness, a good amount of thermal conductivity, and fatigue strength. In this work, the reasons for the failure of two wheeler engine valve were evaluated and found that failure takes place due to change in the chemical composition mainly due to thermal diffusion at the interfaces. Thermal barrier coatings on the valve surface arrest the temperature load and increase its life. In this work, the performance of various titanium based composite coatings, i.e., TiN, TiC, TiC-Al2O3, TiCN, TiAlN, TiN- Al2O3, DLC, and uncoated valves of two wheeler engine was simulated using Finite Element Analysis. The simulation results indicated that coated valves have less thermal and fatigue loading and have more life than the uncoated valve. The Finite element simulation results of both coated and uncoated valves are presented and analyzed in this paper.


Sign in / Sign up

Export Citation Format

Share Document