Failure Analysis of Engine Valves and its Performance Evaluation under Various Titanium Based Composite Coatings Using FE Analysis

2021 ◽  
Vol 903 ◽  
pp. 79-89
Author(s):  
R. Sundara Rao ◽  
K. Hemachandra Reddy ◽  
Ch.R. Vikram Kumar

In an internal combustion engine poppet valve is the crucial component which often opens and closes, thereby regulating gas flow in an engine cylinder. During engine operation, the valve is exposed to high temperature gases (thermal load) along with spring and cam loads (mechanical load). Due to high temperatures and fatigue loads, the valves are subjected to metallurgical changes and leads to failure. In order to resist these extreme conditions of high temperature and mechanical loads, the engine valve should possess special properties such as high surface hardness, a good amount of thermal conductivity, and fatigue strength. In this work, the reasons for the failure of two wheeler engine valve were evaluated and found that failure takes place due to change in the chemical composition mainly due to thermal diffusion at the interfaces. Thermal barrier coatings on the valve surface arrest the temperature load and increase its life. In this work, the performance of various titanium based composite coatings, i.e., TiN, TiC, TiC-Al2O3, TiCN, TiAlN, TiN- Al2O3, DLC, and uncoated valves of two wheeler engine was simulated using Finite Element Analysis. The simulation results indicated that coated valves have less thermal and fatigue loading and have more life than the uncoated valve. The Finite element simulation results of both coated and uncoated valves are presented and analyzed in this paper.

2011 ◽  
Vol 471-472 ◽  
pp. 343-348
Author(s):  
Ziad K. Awad ◽  
Talal F. Yusaf

Glass fibre composite reinforcement bars have been used in the reinforced concrete structures as a powerful solution of the steel corrosion problem. This research work aims to use a 3D finite element method and EURO – code models to simulate a concrete beam reinforced with fibre composite bars under the effects of high temperature. The behaviour of the structure is very complex due to load combination and different material response. The applied load was an external mechanical load and a thermal load. The material response was considered as thermal expansion, cracking, crushing, yielding and changing of material properties with the temperature increase. The FE element was modified to allow temperature distribution and material properties changing to throw thickness of the concrete beam. In addition, the geometrical non – linearity is considered in the analysis due to the large deflection of the structure. The prediction results were compared with the available experimental results, and it gives a well correspond.


2021 ◽  
Author(s):  
yongqiang wu ◽  
Zhi-ren Sun ◽  
Kaikun Wang

Abstract During the preparation of the ingot with liquid core in the early stage, the finite element models of the solidification and the ultra-high temperature demoulding were established in DEFORM-3D. The thermophysical properties of ASSAB 718 with the variations of C, Mn and Cr were calculated in JMatPro®. The material database was imported into DEFORM-3D. Through the analysis of the finite element simulation results, we obtained the influence of three main elements C, Mn and Cr contents on the size of the solid-phase region, the liquid-phase region and the solid-liquid two-phase region in the ingot. We optimized the composition of the material to get a wide solid-liquid phase range. The high carbon, the medium manganese and the high chromium contents were beneficial to form the liquid core. Based on the method of the solidification time, the algorithm was programmed by the python language. We analyzed the influence of the three elements C, Mn, and Cr on the concentration distribution based on the temperature field data, which were obtained by DEFORM-2D after the solidification and the ultra-high temperature demoulding. According to the simulation results, we found that the region prone to negative segregation.


Author(s):  
Chang-Young Oh ◽  
Tae-Kwang Song ◽  
Yun-Jae Kim

In this paper, a prediction of C(t), a crack tip parameter for the transient creep condition, for the circumferential cracked pipe under combined mechanical and thermal stresses are presented. The estimation formulae for C(t)-integral of the cracked component operating under mechanical load alone have been provided for decades [1–6]. However, high temperature structures usually work under combined mechanical and thermal load. And the interactions between mechanical and thermal loads make the relaxation rate different from those produced under mechanical load alone. In this study, 3-dimensional finite element analyses are conducted to calculate the C(t)-integral under combined mechanical and thermal load. As a result, redistribution time for the crack under combined mechanical and thermal load is re-defined to quantify the C(t)-integral. The estimation of C(t)-integral using this proposed redistribution time agrees well with FE results.


2012 ◽  
Vol 429 ◽  
pp. 3-8
Author(s):  
Xin Li Tian ◽  
Ke Ling Lin ◽  
Bao Guo Zhang ◽  
Chun Fang Xue ◽  
Jian Quan Wang

A theoretical model of temperature for Al2O3ceramics during micro-detonation of arc strike machining was established. Based on finite element theory, the temperature of Al2O3ceramics during micro-detonation of arc strike machining was simulated with the aid of Ansys software, combined with the actual processing, the width and depth of cavity impacted by micro-detonation were calculated. The simulation results show that the highest temperature of Al2O3ceramics is over 13435 °C in a given processing parameters, while the high-temperature zone is quite small. With the increase of pulse width and electricity, the temperature within the machined zone increases rapidly, but the outside area kept a low temperature; and with the increase of nozzle radius, the diameter to depth ratio of the distribution of temperature is increasing gradually. The data gained from the simulation is proved to be accordant with the data gained from experiments.


Coatings ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 206
Author(s):  
Qiang Wang ◽  
Peng Han ◽  
Shuo Yin ◽  
Wen-Juan Niu ◽  
Le Zhai ◽  
...  

Compared with traditional crystalline materials, amorphous alloys have excellent corrosion and wear resistance and high elastic modulus, due to their unique short-range ordered and long-range disordered atomic arrangement as well as absence of defects, such as grain boundaries and dislocations. Owing to the limitation of the bulk size of amorphous alloys as structural materials, the application as functional coatings can widely extend their use in various engineering fields. This review first briefly introduces the problems involved during high temperature preparation processes of amorphous coatings, including laser cladding and thermal spraying. Cold spray (CS) is characterized by a low-temperature solid-state deposition, and thus the oxidation and crystallization related with a high temperature environment can be avoided during the formation of coatings. Therefore, CS has unique advantages in the preparation of fully amorphous alloy coatings. The research status of Fe-, Al-, Ni-, and Zr-based amorphous alloy coatings and amorphous composite coatings are reviewed. The influence of CS process parameters, and powders and substrate conditions on the microstructure, hardness, as well as wear and corrosion resistance of amorphous coatings is analyzed. Meanwhile, the deposition mechanism of amorphous alloy coatings is discussed by simulation and experiment. Finally, the key issues involved in the preparation of amorphous alloy coatings via CS technology are summarized, and the future development is also being prospected.


Energies ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 4136
Author(s):  
Clemens Gößnitzer ◽  
Shawn Givler

Cycle-to-cycle variations (CCV) in spark-ignited (SI) engines impose performance limitations and in the extreme limit can lead to very strong, potentially damaging cycles. Thus, CCV force sub-optimal engine operating conditions. A deeper understanding of CCV is key to enabling control strategies, improving engine design and reducing the negative impact of CCV on engine operation. This paper presents a new simulation strategy which allows investigation of the impact of individual physical quantities (e.g., flow field or turbulence quantities) on CCV separately. As a first step, multi-cycle unsteady Reynolds-averaged Navier–Stokes (uRANS) computational fluid dynamics (CFD) simulations of a spark-ignited natural gas engine are performed. For each cycle, simulation results just prior to each spark timing are taken. Next, simulation results from different cycles are combined: one quantity, e.g., the flow field, is extracted from a snapshot of one given cycle, and all other quantities are taken from a snapshot from a different cycle. Such a combination yields a new snapshot. With the combined snapshot, the simulation is continued until the end of combustion. The results obtained with combined snapshots show that the velocity field seems to have the highest impact on CCV. Turbulence intensity, quantified by the turbulent kinetic energy and turbulent kinetic energy dissipation rate, has a similar value for all snapshots. Thus, their impact on CCV is small compared to the flow field. This novel methodology is very flexible and allows investigation of the sources of CCV which have been difficult to investigate in the past.


Author(s):  
Haolei Mou ◽  
Zhenyu Feng ◽  
Jiang Xie ◽  
Jun Zou ◽  
Kun Zhou

AbstractTo analysis the failure and energy absorption of carbon fiber reinforced polymer (CFRP) thin-walled square tube, the quasi-static axial compression loading tests are conducted for [±45]3s square tube, and the square tube after test is scanned to further investigate the failure mechanism. Three different finite element models, i.e. single-layer shell model, multi-layer shell model and stacked shell mode, are developed by using the Puck 2000 matrix failure criterion and Yamada Sun fiber failure criterion, and three models are verified and compared according to the experimental energy absorption metrics. The experimental and simulation results show that the failure mode of [±45]3s square tube is the local buckling failure mode, and the energy are absorbed mainly by intralaminar and interlaminar delamination, fiber elastic deformation, fiber debonding and fracture, matrix deformation cracking and longitudinal crack propagation. Three different finite element models can reproduce the collapse behaviours of [±45]3s square tube to some extent, but the stacked shell model can better reproduce the failure mode, and the difference of specific energy absorption (SEA) is minimum, which shows the numerical simulation results are in better agreement with the test results.


Metals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 875
Author(s):  
Jie Wu ◽  
Yuri Hovanski ◽  
Michael Miles

A finite element model is proposed to investigate the effect of thickness differential on Limiting Dome Height (LDH) testing of aluminum tailor-welded blanks. The numerical model is validated via comparison of the equivalent plastic strain and displacement distribution between the simulation results and the experimental data. The normalized equivalent plastic strain and normalized LDH values are proposed as a means of quantifying the influence of thickness differential for a variety of different ratios. Increasing thickness differential was found to decrease the normalized equivalent plastic strain and normalized LDH values, this providing an evaluation of blank formability.


Sensors ◽  
2021 ◽  
Vol 21 (8) ◽  
pp. 2715
Author(s):  
Ruth Yadira Vidana Morales ◽  
Susana Ortega Cisneros ◽  
Jose Rodrigo Camacho Perez ◽  
Federico Sandoval Ibarra ◽  
Ricardo Casas Carrillo

This work illustrates the analysis of Film Bulk Acoustic Resonators (FBAR) using 3D Finite Element (FEM) simulations with the software OnScale in order to predict and improve resonator performance and quality before manufacturing. This kind of analysis minimizes manufacturing cycles by reducing design time with 3D simulations running on High-Performance Computing (HPC) cloud services. It also enables the identification of manufacturing effects on device performance. The simulation results are compared and validated with a manufactured FBAR device, previously reported, to further highlight the usefulness and advantages of the 3D simulations-based design process. In the 3D simulation results, some analysis challenges, like boundary condition definitions, mesh tuning, loss source tracing, and device quality estimations, were studied. Hence, it is possible to highlight that modern FEM solvers, like OnScale enable unprecedented FBAR analysis and design optimization.


Sign in / Sign up

Export Citation Format

Share Document