Systematic Uncertainty Considerations in the Comparison of Experimental and Computed Cylinder Pressure and Heat Release Histories

Author(s):  
K. R. Partridge ◽  
P. R. Jha ◽  
H. Mahabadipour ◽  
K. K. Srinivasan ◽  
S. R. Krishnan

Computational simulations of engine combustion processes are increasingly relied upon to lead the design of advanced IC engines. Both computational fluid dynamics (CFD) simulations as well as thermodynamics-based phenomenological 0D or 1D gas dynamics simulations are examples of current simulation strategies. Before simulations can be utilized to guide the design process, they must be validated with experimental results. Typically, the experimental data used for validation of computational simulations include in-cylinder pressure and apparent heat release rate (AHRR) histories. However, the process of comparison of experimental and simulated pressure and AHRR curves is largely qualitative; therefore, the validation process is mostly visual. In the present work, the authors introduce a framework for quantifying uncertainties in experimental pressure data, as well as uncertainties in the “average” AHRR curve that is derived from ensemble-averaged cylinder pressure histories. Predicted AHRR curves from CFD simulations are also quantitatively compared with the experimental AHRR bounded by “uncertainty bands” in the present work.

2019 ◽  
Vol 141 (9) ◽  
Author(s):  
Daniel M. Probst ◽  
Mandhapati Raju ◽  
Peter K. Senecal ◽  
Janardhan Kodavasal ◽  
Pinaki Pal ◽  
...  

This work evaluates different optimization algorithms for computational fluid dynamics (CFD) simulations of engine combustion. Due to the computational expense of CFD simulations, emulators built with machine learning algorithms were used as surrogates for the optimizers. Two types of emulators were used: a Gaussian process (GP) and a weighted variety of machine learning methods called SuperLearner (SL). The emulators were trained using a dataset of 2048 CFD simulations that were run concurrently on a supercomputer. The design of experiments (DOE) for the CFD runs was obtained by perturbing nine input parameters using a Monte-Carlo method. The CFD simulations were of a heavy duty engine running with a low octane gasoline-like fuel at a partially premixed compression ignition mode. Ten optimization algorithms were tested, including types typically used in research applications. Each optimizer was allowed 800 function evaluations and was randomly tested 100 times. The optimizers were evaluated for the median, minimum, and maximum merits obtained in the 100 attempts. Some optimizers required more sequential evaluations, thereby resulting in longer wall clock times to reach an optimum. The best performing optimization methods were particle swarm optimization (PSO), differential evolution (DE), GENOUD (an evolutionary algorithm), and micro-genetic algorithm (GA). These methods found a high median optimum as well as a reasonable minimum optimum of the 100 trials. Moreover, all of these methods were able to operate with less than 100 successive iterations, which reduced the wall clock time required in practice. Two methods were found to be effective but required a much larger number of successive iterations: the DIRECT and MALSCHAINS algorithms. A random search method that completed in a single iteration performed poorly in finding optimum designs but was included to illustrate the limitation of highly concurrent search methods. The last three methods, Nelder–Mead, bound optimization by quadratic approximation (BOBYQA), and constrained optimization by linear approximation (COBYLA), did not perform as well.


Energies ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 2197
Author(s):  
Nayara Rodrigues Marques Sakiyama ◽  
Jurgen Frick ◽  
Timea Bejat ◽  
Harald Garrecht

Predicting building air change rates is a challenge for designers seeking to deal with natural ventilation, a more and more popular passive strategy. Among the methods available for this task, computational fluid dynamics (CFD) appears the most compelling, in ascending use. However, CFD simulations require a range of settings and skills that inhibit its wide application. With the primary goal of providing a pragmatic CFD application to promote wind-driven ventilation assessments at the design phase, this paper presents a study that investigates natural ventilation integrating 3D parametric modeling and CFD. From pre- to post-processing, the workflow addresses all simulation steps: geometry and weather definition, including incident wind directions, a model set up, control, results’ edition, and visualization. Both indoor air velocities and air change rates (ACH) were calculated within the procedure, which used a test house and air measurements as a reference. The study explores alternatives in the 3D design platform’s frame to display and compute ACH and parametrically generate surfaces where air velocities are computed. The paper also discusses the effectiveness of the reference building’s natural ventilation by analyzing the CFD outputs. The proposed approach assists the practical use of CFD by designers, providing detailed information about the numerical model, as well as enabling the means to generate the cases, visualize, and post-process the results.


2021 ◽  
Vol 11 (7) ◽  
pp. 2961
Author(s):  
Nikola Čajová Kantová ◽  
Alexander Čaja ◽  
Marek Patsch ◽  
Michal Holubčík ◽  
Peter Ďurčanský

With the combustion of solid fuels, emissions such as particulate matter are also formed, which have a negative impact on human health. Reducing their amount in the air can be achieved by optimizing the combustion process as well as the flue gas flow. This article aims to optimize the flue gas tract using separation baffles. This design can make it possible to capture particulate matter by using three baffles and prevent it from escaping into the air in the flue gas. The geometric parameters of the first baffle were changed twice more. The dependence of the flue gas flow on the baffles was first observed by computational fluid dynamics (CFD) simulations and subsequently verified by the particle imaging velocimetry (PIV) method. Based on the CFD results, the most effective is setting 1 with the same boundary conditions as those during experimental PIV measurements. Setting 2 can capture 1.8% less particles and setting 3 can capture 0.6% less particles than setting 1. Based on the stoichiometric calculations, it would be possible to capture up to 62.3% of the particles in setting 1. The velocities comparison obtained from CFD and PIV confirmed the supposed character of the turbulent flow with vortexes appearing in the flue gas tract, despite some inaccuracies.


2019 ◽  
Vol 97 (11) ◽  
pp. 795-804 ◽  
Author(s):  
Dong Xiang ◽  
Weihua Zhu

The density functional tight-binding molecular dynamics approach was used to study the mechanisms and kinetics of initial pyrolysis and combustion reactions of isolated and multi-molecular FOX-7. Based on the thermal cleavage of bridge bonds, the pyrolysis process of FOX-7 can be divided into three stages. However, the combustion process can be divided into five decomposition stages, which is much more complex than the pyrolysis reactions. The vibrations in the mean temperature contain nodes signifying the formation of new products and thereby the transitions between the various stages in the pyrolysis and combustion processes. Activation energy and pre-exponential factor for the pyrolysis and combustion reactions of FOX-7 were obtained from the kinetic analysis. It is found that the activation energy of its pyrolysis and combustion reactions are very low, making both take place fast. Our simulations provide the first atomic-level look at the full dynamics of the complicated pyrolysis and combustion process of FOX-7.


2014 ◽  
Vol 984-985 ◽  
pp. 957-961
Author(s):  
Vijayashree ◽  
P. Tamil Porai ◽  
N.V. Mahalakshmi ◽  
V. Ganesan

This paper presents the modeling of in-cylinder pressure variation of a four-stroke single cylinder spark ignition engine. It uses instantaneous properties of working fluid, viz., gasoline to calculate heat release rates, needed to quantify combustion development. Cylinder pressure variation with respect to either volume or crank angle gives valuable information about the combustion process. The analysis of the pressure – volume or pressure-theta data of a engine cycle is a classical tool for engine studies. This paper aims at demonstrating the modeling of pressure variation as a function of crank angle as well as volume with the help of MATLAB program developed for this purpose. Towards this end, Woschni heat release model is used for the combustion process. The important parameter, viz., peak pressure for different compression ratios are used in the analysis. Predicted results are compared with experimental values obtained for a typical compression ratio of 8.3.


2018 ◽  
Vol 141 (4) ◽  
Author(s):  
Björn Gwiasda ◽  
Matthias Mohr ◽  
Martin Böhle

Suction performance, pressure rise, and efficiency for four different inducers are examined with computational fluid dynamics (CFD) simulations and experiments performed with 18,000 rpm and 24,000 rpm. The studies originate from a research project that includes the construction of a new test bench in order to judge the design of the different inducers. This test bench allows to conduct experiments with a rotational speed of up to 40,000 rpm and high pressure ranges from 0.1 bar to 40 bar with water as working fluid. Experimental results are used to evaluate the accuracy of the simulations and to gain a better understanding of the design parameter. The influence of increasing the rotating speed from 18,000 rpm to 24,000 rpm on the performance is also shown.


2009 ◽  
Vol 62 (3) ◽  
pp. 477-491 ◽  
Author(s):  
D. C. Lo ◽  
Dong-Taur Su ◽  
Jan-Ming Chen

It is well known that vessels operating in the vicinity of a lateral bank experience a significant yaw moment and sway force. This bank effect has a major impact on the manoeuvring properties of the vessel and must therefore be properly understood to ensure the safe passage of the vessel through the restricted waterway. Accordingly, this study performs a series of simulations using commercial FLOW-3D® computational fluid dynamics (CFD) software and the KRISO 3600 TEU container ship model to examine the effects of the vessel speed and distance to bank on the magnitude and time-based variation of the yaw angle and sway force. The results show that for a given vessel speed, the yaw angle and sway force increase as the distance to bank reduces, while for a given distance between the ship and the bank, the yaw angle and sway force increase with an increasing vessel speed. In addition, it is shown that even when a vessel advances at a very low speed, it experiences a significant bank effect when operating in close vicinity to the bank. Overall, the results presented in this study confirm the feasibility of the CFD modelling approach as a means of obtaining detailed insights into the bank effect without the need for time-consuming and expensive ship trials.


2008 ◽  
Vol 5 (28) ◽  
pp. 1291-1301 ◽  
Author(s):  
Sam Van Wassenbergh ◽  
Peter Aerts

Most theoretical models of unsteady aquatic movement in organisms assume that including steady-state drag force and added mass approximates the hydrodynamic force exerted on an organism's body. However, animals often perform explosively quick movements where high accelerations are realized in a few milliseconds and are followed closely by rapid decelerations. For such highly unsteady movements, the accuracy of this modelling approach may be limited. This type of movement can be found during pivot feeding in pipefish that abruptly rotate their head and snout towards prey. We used computational fluid dynamics (CFD) to validate a simple analytical model of cranial rotation in pipefish. CFD simulations also allowed us to assess prey displacement by head rotation. CFD showed that the analytical model accurately calculates the forces exerted on the pipefish. Although the initial phase of acceleration changes the flow patterns during the subsequent deceleration phase, the accuracy of the analytical model was not reduced during this deceleration phase. Our analysis also showed that prey are left approximately stationary despite the quickly approaching pipefish snout. This suggests that pivot-feeding fish need little or no suction to compensate for the effects of the flow induced by cranial rotation.


Author(s):  
Daniel Barreca ◽  
Matthew Franchek ◽  
Mayank Tyagi

Reliability of blowout preventers (BOP) is central for the safety of both rig workers and the surrounding environment. Analysis of dynamic fluid conditions within the wellbore and BOP can provide quantitative data related to this reliability. In cases of a hard shut in, it is suspected that the sudden closure of rams can cause a water hammer effect, creating pressure vibrations within the wellbore. Additionally, as the blowout preventer reaches a fully closed state, fluid velocity can drastically increase. This results in increased erosion rates within the blowout preventer. To investigate fluid movement and pressure vibrations during a well shut-in, CFD simulations will be conducted. Dynamic meshing techniques within ANSYS® FLUENT can be utilized to simulate closing blowout preventer configurations for both 2-D and 3-D geometries. These simulations would deliver information that could lead to a better understanding of certain performance issues during well shut-ins. Such information includes flow velocity magnitude within the BOP and maximum pressure pulse values within the wellbore.


RBRH ◽  
2021 ◽  
Vol 26 ◽  
Author(s):  
Mayara Francisca da Silva ◽  
Fábio Veríssimo Gonçalves ◽  
Johannes Gérson Janzen

ABSTRACT Computational Fluid Dynamics (CFD) simulations of a leakage in a pressurized pipe were undertaken to determine the empirical effects of hydraulic and geometric factors on the leakage flow rate. The results showed that pressure, leakage area and leakage form, influenced the leakage flow rate significantly, while pipe thickness and mean velocity did not influence the leakage flow rate. With relation to the interactions, the effect of pressure upon leakage flow rate depends on leakage area, being stronger for great leakage areas; the effects of leakage area and pressure on leakage flow rate is more pronounced for longitudinal leakages than for circular leakages. Finally, our results suggest that the equations that predict leakage flow rate in pressurized pipes may need a revision.


Sign in / Sign up

Export Citation Format

Share Document