Effect on Heat Transfer of Particle Migration in Suspensions of Nanoparticles Flowing Through Minichannels

Author(s):  
Dongsheng Wen ◽  
Yulong Ding

Thermal management is one of the greatest challenges in maintaining the functionality and reliability of high-speed micro-electronic systems such as MEMS and NEMS. This requires development of high performance heat transfer media, which can not only flow through micro- and nano-channels under local operating conditions, but also carry as more heat as possible out of the system. Recent work has shown that suspensions of nanoparticles with a size considerably smaller that 100nm but with thermal conductivity orders of magnitudes higher that the base liquids have a greater potential as a high energy carrier for the micro- and nano-systems. However, it is also known that particles in a suspension undergoing a shearing action may migrate, hence lead to non-uniformity. This indicates that the efficiency of heat transfer in the micro- and nano-channels may not be as superior as expected, which bears significance to the system design and operation. This work aims at addressing this issue by examine the effect of particle migration on heat transfer in small channels. This involves development of both flow and heat transfer models, and numerical solution to the models. The flow model takes into account the effects of the shear-induced and viscosity gradient-induced particle migrations, as well as self-diffusion due to the Brownian motion, which is coupled with an energy equation. The results show that particle migration leads to concentration of particles in the wall region can be much lower than that in the core region. Particle migration is also shown to increase the Nusselt number under both constant temperature and constant heat flux conditions.

Lubricants ◽  
2020 ◽  
Vol 8 (2) ◽  
pp. 20 ◽  
Author(s):  
Gajarajan Sivayogan ◽  
Ramin Rahmani ◽  
Homer Rahnejat

Energy efficiency and functional reliability are the two key requirements in the design of high-performance transmissions. Therefore, a representative analysis replicating real operating conditions is essential. This paper presents the thermoelastohydrodynamic lubrication (TEHL) of meshing spur gear teeth of high-performance racing transmission systems, where high generated contact pressures and lubricant shear lead to non-Newtonian traction. The determination of the input contact geometry of meshing pairs as well as contact kinematics are essential steps for representative TEHL. These are incorporated in the current analysis through the use of Lubricated Loaded Tooth Contact Analysis (LLTCA), which is far more realistic than the traditional Tooth Contact Analysis (TCA). In addition, the effects of lubricant and flash surface temperature rise of contacting pairs, leading to the thermal thinning of lubricant, are taken into account using a thermal network model. Furthermore, high-speed contact kinematics lead to shear thinning of the lubricant and reduce the film thickness under non-Newtonian traction. This comprehensive approach based on established TEHL analysis, particularly including the effect of LLTCA on the TEHL of spur gears, has not hitherto been reported in literature.


2011 ◽  
Vol 337 ◽  
pp. 46-49
Author(s):  
Li Hua Song ◽  
Jun Yuan Kang

In accordance with the latest development direction in the filed of strengthening the heat transfer technology of strengthening the heat transfer on division of strengthening heat transfer by international authoritative Professor A.E. Bergle), including 3D(three-dimensional) heat transfer of ultra-high performance improved in the fins of the design and analysis; 3D heat transfer strengthening of the plowing process mechanism the flexibility ,high speed and high precision of gathered tools and the realization of a 3D digital design and manufacturing . It also researches on the influential law of process parameters on the formation of the fin. It is shown that the whole fin-forming process can be classified into three stages:plowing,heaving and fins forming, and that the front angle,plowing depth and the plowing speed are the main factors influencing the fin forming. Moreover,within a certain range,the height of fin increases with the front angle and the plowing depth.


Author(s):  
Rémy Fransen ◽  
Nicolas Gourdain ◽  
Laurent Y. M. Gicquel

This work focuses on numerical simulations of flows in blade internal cooling system. Large Eddy Simulation (LES) and Reynolds-Averaged Navier Stokes (RANS) approaches are compared in a typical blade cooling related problem. The case is a straight rib-roughened channel with high blockage ratio, computed and compared for both a periodic and full spatial domains. The configuration was measured at the Von Karman Institute (VKI) using Particle Image Velocimetry (PIV) in near gas turbine operating conditions. Results show that RANS models used fail to predict the full evolution of the flow within the channels where massive separation and large scale unsteady features are evidenced. In contrast LES succeeds in reproducing these complex flow motions and both mean and fluctuating components are clearly improved in the channels and in the near wall region. Periodic computations are gauged against the spatial computational domain and results on the heat transfer problem are addressed.


Author(s):  
Shunsuke Yamada ◽  
Hajime Nakamura

In order to investigate the flow and heat transfer fluctuations in the near-wall region downstream a backward facing step, a Time-resolved Stereoscopic Particle Image Velocimetry (TS-PIV) and a high-speed infrared thermography (IRT) combined system was constructed. Using this measurement system, the time series of the velocity in the vicinity of the heated wall and the heat transfer on the heated wall were measured at Reynolds number, which is based on the step height and inlet mainstream velocity, of 2.5 × 103. It confirmed the validity of the velocity fluctuation obtained by using TS-PIV. The results showed that the forward and downwash flows correspond to the enhancement of the heat transfer in the near-wall region. Also, the vortex structure in the yz plane was detected by Qyz-criterion, and the locational relationship between the vortex structure and the heat transfer enhancement was investigated.


Electronics ◽  
2021 ◽  
Vol 10 (20) ◽  
pp. 2546
Author(s):  
Alessandro Gabrielli ◽  
Fabrizio Alfonsi ◽  
Alberto Annovi ◽  
Alessandra Camplani ◽  
Alessandro Cerri

In recent years, the technological node used to implement FPGA devices has led to very high performance in terms of computational capacity and in some applications these can be much more efficient than CPUs or other programmable devices. The clock managers and the enormous versatility of communication technology through digital transceivers place FPGAs in a prime position for many applications. For example, from real-time medical image analysis to high energy physics particle trajectory recognition, where computation time can be crucial, the benefits of using frontier FPGA capabilities are even more relevant. This paper shows an example of FPGA hardware implementation, via a firmware design, of a complex analytical algorithm: The Hough transform. This is a mathematical spatial transformation used here to facilitate on-the-fly recognition of the trajectories of ionising particles as they pass through the so-called tracker apparatus within high-energy physics detectors. This is a general study to demonstrate that this technique is not only implementable via software-based systems, but can also be exploited using consumer hardware devices. In this context the latter are known as hardware accelerators. In this article in particular, the Xilinx UltraScale+ FPGA is investigated as it belongs to one of the frontier family devices on the market. These FPGAs make it possible to reach high-speed clock frequencies at the expense of acceptable energy consumption thanks to the 14 nm technological node used by the vendor. These devices feature a huge number of gates, high-bandwidth memories, transceivers and other high-performance electronics in a single chip, enabling the design of large, complex and scalable architectures. In particular the Xilinx Alveo U250 has been investigated. A target frequency of 250 MHz and a total latency of 30 clock periods have been achieved using only the 17 ÷ 53% of LUTs, the 8 ÷ 12% of DSPs, the 1 ÷ 3% of Block Rams and a Flip Flop occupancy range of 9 ÷ 28%.


2021 ◽  
Vol 2116 (1) ◽  
pp. 012031
Author(s):  
P Kumavat ◽  
S M O’Shaughnessy

Abstract The increasing power density requirements of next generation high performance electronic devices has resulted in ever-increasing heat flux densities which necessitates the evolution of new liquid-based heat exchange technologies. Pulsating flow in single-phase cooling systems is viewed as a potential solution. In this study, an experimental analysis of thermally developed pulsating flow in a rectangular minichannel is conducted. The channel test setup involves a heated bottom section approximated as a constant heat flux boundary. Asymmetric sinusoidal pulsating flows with a fixed flow rate amplitude ratio of 0.9 and Womersley numbers (Wo) of 0.51 and 1.6 are investigated. The wall temperature profiles are recorded using infrared thermography. It is observed that the transverse wall temperature profile is influenced by the sudden velocity variations of such characteristic waveforms. A heat transfer enhancement of 6% was determined for asymmetric flow pulsations of Wo > 1 over the steady flow with a potential augmentation for higher flow rate amplitudes.


2020 ◽  
Vol 142 (9) ◽  
Author(s):  
Mandana S. Saravani ◽  
Ryoichi S. Amano ◽  
Nicholas J. DiPasquale ◽  
Joseph Wayne Halmo

Abstract The present work investigates the effects of various guide vane designs on the heat transfer enhancement of rotating U-duct configuration with parallel 45-deg ribs. The ribs were installed on the bottom wall of the channel, which has a constant heat flux boundary condition. The channel has a square cross section with a 5.08 cm hydraulic diameter. The first and second passes are 514 mm and 460 mm, respectively. The range of Reynolds number for turbulent flow is up to 35,000. The channel rotates at various speeds up to 600 rpm, which brings the maximum rotation number of 0.75. Several computational fluid dynamics simulations are carried out for this study to understand the effect of guide vanes on flow and heat transfer in serpentine channels under various operating conditions.


Author(s):  
Ryoichi S. Amano ◽  
Mandana S. Saravani ◽  
Nicholas DiPasquale

Abstract The present work investigates the effects of various guide vane designs on the heat transfer enhancement of rotating U-Duct configuration with parallel 45-deg ribs. The ribs were installed on the bottom wall of the channel which has a constant heat flux boundary condition. The channel has a square cross-section with a 5.08 cm (2 in) hydraulic diameter. The first and second passes are 514 mm and 460 mm, respectively. The range of Reynolds number for turbulent flow is up to 35,000. The channel rotates in various speed up to 600 rpm which brings the maximum rotation number of 0.75. Several computational fluid dynamics simulations are carried out for this study to understand the effect of guide vanes on flow and heat transfer in serpentine channels under various operating conditions.


Author(s):  
M. Tai ◽  
J. Rastegar

Abstract An integrated structure and motion pattern specific design approach is proposed for optimal design of high speed and accuracy computer controlled machines including robots. The approach is based on the Trajectory Pattern Method (TPM). The current approach to the design of such machines is to assume that the machine will be required to perform more or less any arbitrary and often unrealistic tasks. This assumption nearly always leads to designs based on the worst operating conditions. The proposed trajectory pattern based design methodology presented in this paper stems from a fundamentally new design philosophy. The philosophy behind the proposed approach is that machines in general and ultra-high performance machines in particular must only be designed to perform a class or classes of motions effectively. And that trajectory patterns, i.e., classes of parametric trajectories, exist with which high speed motions can be synthesized with minimal ensuing vibration and control problems. In the proposed approach, given the kinematic structure of the machine, its kinematic and dynamic parameters are optimized simultaneously with the parameters that describe a selected trajectory pattern. The controller parameters may also be included as design variables. In the present study, the optimality criterion employed is based on minimizing the higher harmonic portion of the actuating forces (torques) required for performing the selected class(es) of motion patterns. Trajectories that do not demand high frequency actuating torque harmonics are desirable since they reduce vibration and control problems in high performance systems and reduce settling time. Examples of the application of the proposed approach are presented.


1995 ◽  
Vol 117 (3) ◽  
pp. 474-484 ◽  
Author(s):  
T. Bo ◽  
H. Iacovides ◽  
B. E. Launder

A numerical study of developing flow through a heated duct of square cross section rotating in orthogonal mode is reported. The two main aims are to explore the effects of rotational buoyancy on the flow development and to assess the ability of available turbulence models to predict such flows. Two test cases have been computed corresponding to values of the rotation number, Ro, of 0.12 and 0.24, which are typical of operating conditions in internal cooling passages of gas turbine blades. Computations from three turbulence models are presented: a k–ε eddy viscosity (EVM) model matched to a low-Reynolds-number one-equation EVM in the near-wall region; a low-Re k–ε EVM and a low-Re algebraic stress model (ASM). Additional computations in which the fluid density is assumed to remain constant allow the distinct contributions from buoyancy and Coriolis forces to be separated. It is thus shown that rotational buoyancy can have a substantial influence on the flow development and that, in the case of outward flow, it leads to a considerable increase of the side-averaged heat transfer coefficient. The Coriolis-induced secondary motion leads to an augmentation of the mean heat transfer coefficient on the pressure surface and a reduction on the suction side. The k–ε/one-equation EVM produces a mostly reasonable set of heat transfer predictions, but some deficiencies do emerge at the higher rotation number. In contrast, predictions with the low-Re k–ε EVM return a spectacularly unrealistic behavior while the low-Re ASM thermal predictions are in encouragingly close agreement with available measurements.


Sign in / Sign up

Export Citation Format

Share Document