Turbulent Mixing Characteristics in the Converging Region of Five-Parallel Jets

Author(s):  
Nailiang Zhuang ◽  
Bonan Yang ◽  
Lianfa Wang ◽  
Hongsheng Yuan ◽  
Sichao Tan

Plate-type reactor fuel is getting increasing attentions as it features excellent heat transfer ability and compact structure. Turbulence mixing accompanied with momentum and mass exchange is typical phenomena in the converging region downstream of parallel plane fuels. To deepen understanding turbulence mixing characteristics and obtain more benchmark data for CFD, an experimental study was conducted by 2D particle image velocimetry (2D-PIV). Ensemble average profile of velocity, vorticity, turbulence intensity, as well as Reynolds stress are analyzed, respectively. Results reveal that two kinds of merging points (mp) were found, i.e., flows from two side jets merge at y/d = 3 (mp1), and flows from middle three jets merge at y/d = 7.6(mp2). The decay of vertical velocity decreases fast primarily until y/d = 6, then slightly increases until y/d = 8.8, and finally decreases gradually. Decay of velocity magnitude of present study decreases sharply until y/d = 6.4, then decreases gradually. This tendency of five-parallel jets is similar to the result of two-parallel jets. From flow visualization, the vortex scale decreases once the vortex formed. The vorticity reaches its maximum at about y/d = 1.3 and then decreases gradually. Consistently with the indicated of velocity distribution, the vorticity distribution tends to mild with the flow developing downstream. However, the location of vortex center is affected by spanwise momentum exchange. Vortices started moving closer around the mp2 indicating a strong combination of activities. Spanwise turbulence intensity shows strong fluctuations existed around mp1 implying that the main momentum transfer happened in the merging region.

Author(s):  
Nasiruddin Shaikh ◽  
Kamran Siddiqui

An experimental study conducted to investigate the airside flow behavior within the crest-trough region over wind generated water waves is reported. Two-dimensional velocity field in a plane perpendicular to the surface was measured using particle image velocimetry (PIV) at wind speeds ranging from 1.5 m s−1 to 4.4 m s−1. The results show a reduction in the mean velocity magnitude when gravity waves appear on the surface. A sequence of consecutive velocity fields has shown the bursting and sweeping processes and the flow separation above the waves. The results also indicate that the flow dynamics in the crest-trough region are significantly different than that at greater heights. High level of turbulence was observed in this region which could not be predicted from the measurements at greater heights. Thus, it is concluded that the quantitative investigation of the flow in the immediate vicinity of the interface is vital for an improved understanding of the heat, mass and momentum exchange between air and water.


2007 ◽  
Vol 30 (7) ◽  
pp. 640-648 ◽  
Author(s):  
R. Kaminsky ◽  
K. Dumont ◽  
H. Weber ◽  
M. Schroll ◽  
P. Verdonck

The aim of this study was to validate the 2D computational fluid dynamics (CFD) results of a moving heart valve based on a fluid-structure interaction (FSI) algorithm with experimental measurements. Firstly, a pulsatile laminar flow through a monoleaflet valve model with a stiff leaflet was visualized by means of Particle Image Velocimetry (PIV). The inflow data sets were applied to a CFD simulation including blood-leaflet interaction. The measurement section with a fixed leaflet was enclosed into a standard mock loop in series with a Harvard Apparatus Pulsatile Blood Pump, a compliance chamber and a reservoir. Standard 2D PIV measurements were made at a frequency of 60 bpm. Average velocity magnitude results of 36 phase-locked measurements were evaluated at every 10° of the pump cycle. For the CFD flow simulation, a commercially available package from Fluent Inc. was used in combination with in-house developed FSI code based on the Arbitrary Lagrangian-Eulerian (ALE) method. Then the CFD code was applied to the leaflet to quantify the shear stress on it. Generally, the CFD results are in agreement with the PIV evaluated data in major flow regions, thereby validating the FSI simulation of a monoleaflet valve with a flexible leaflet. The applicability of the new CFD code for quantifying the shear stress on a flexible leaflet is thus demonstrated. (Int J Artif Organs 2007; 30: 640–8)


Metals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1942
Author(s):  
Gerardo Aguilar ◽  
Gildardo Solorio-Diaz ◽  
Alicia Aguilar-Corona ◽  
José Angel Ramos-Banderas ◽  
Constantin A. Hernández ◽  
...  

The use of porous plugs in injecting gas through the bottom of a ladle forms vertical plumes in a very similar way to a truncated cone. The gas plume when exiting the plug has a smaller diameter compared to that formed in the upper zone of the ladle because inertial forces predominate over buoyancy forces in this zone. In addition, the magnitude of the plume velocity is concentrated in an upward direction, which increases the likelihood of low velocity zones forming near the bottom of the ladle, especially in lower corners. In this work, a plug with spiral-shaped channels with different torsion angles is proposed, with the objective that the gas, when passing through them, has a tangential velocity gain or that the velocity magnitude is distributed in the three axes and does not just focus on the upward direction, helping to decrease low velocity zones near the bottom of the ladle for better mixing times. For the experimentation, we worked in a continuous casting ladle water model with two configuration injections, which in previous works were reported as the most efficient in mixing the steel in this ladle. The results obtained using the PIV technique (particle image velocimetry) and conductimetry technique indicate that the plugs with the torsion channels at angles of 60° and 120° improve the mixing times for the two injection configurations.


Author(s):  
Zuliazura Mohd Salleh ◽  
Kahar Osman ◽  
Mohd Fairuz Marian ◽  
Nik Normunira Mat Hassan ◽  
Rais Hanizam Madon ◽  
...  

Experimental works for analysing flow behaviour inside human trachea has become continuous problem as the model used to study cannot imitate the real geometry of human trachea structure. As the technology develop, Rapid Prototyping (RP) become more useful in constructing the 3D model that has complexity in their geometries. RP not only offer several technologies in developing the 3D model, but also varies type of materials that can be used to manufacture the 3D model. In this study, RP technique was chosen to develop the 3D model of human trachea to do the Particle Image Velocimetry (PIV) experimental works. Material used was Vero Clear due to PIV need a model that transparent so that visualization on flow inside the model can be seen and the velocity magnitude can be capture. The geometry was adapted from 60 years old trachea patient where the images of trachea was taken by using CT-scan. MIMICS software was used to extracted the images before reconstruct the trachea into 3D model. Velocity distribution was visualized and the magnitude were taken at both left and right bronchi. From the analysis, it concluded that the distribution of airflow to the second generation of trachea was 60:40 to right and left bronchi. It follows the rules as the right bronchi need to supply more air to the right lung compared to left as the volume of right lung bigger that left lung.


Author(s):  
Ze-Peng Cheng ◽  
Yang Xiang ◽  
Hong Liu

As an effective method to reduce induced drag and the risk of wake encounter, the winglet has been an essential device and developed into diverse configurations. However, the structures and induced drag, as well as wandering features of the wingtip vortices ( WTVs) generated by these diverse winglet configurations are not well understood. Thus, the WTVs generated by four typical wingtip configurations, namely the rectangular wing with blended/raked/split winglet and without winglet (Model BL/ RA/ SP/NO for short), are investigated in this paper using particle image velocimetry technology. Comparing with an isolated primary wingtip vortex generated by Model NO, multiple vortices are twisted coherently after installing the winglets. In addition, the circulation evolution of WTVs demonstrates that the circulation for Model SP is the largest, while Model RA is the smallest. By tracking the instantaneous vortex center, the vortex wandering behavior is observed. The growth rate of wandering amplitude along with the streamwise location from the quickest to the slowest corresponds to Model SP, Model NO, Model BL, Model RA in sequence, implying that the WTVs generated by model SP exhibit the quickest mitigation. Considering that the induced drag scales as the lift to power 2, the induced drag and lift are estimated based on the wake integration method, and then the form factor λ, defined by [Formula: see text], is calculated to evaluate the aerodynamic performance. Comparing with the result of Model NO, the form factor decreases by 7.99%, 4.80%, and 2.60% for Model RA, Model BL, Model SP, respectively. In sum, Model RA and BL have a smaller induced drag coefficient but decay slower; while Model SP has a larger induced drag coefficient but decays quicker. An important implication of these results is that reducing the strength of WTVs and increasing the growth rate of vortex wandering amplitude can be the mutual requirements for designing new winglets.


2016 ◽  
Vol 804 ◽  
pp. 513-530 ◽  
Author(s):  
R. Jason Hearst ◽  
Guillaume Gomit ◽  
Bharathram Ganapathisubramani

The influence of turbulence on the flow around a wall-mounted cube immersed in a turbulent boundary layer is investigated experimentally with particle image velocimetry and hot-wire anemometry. Free-stream turbulence is used to generate turbulent boundary layer profiles where the normalised shear at the cube height is fixed, but the turbulence intensity at the cube height is adjustable. The free-stream turbulence is generated with an active grid and the turbulent boundary layer is formed on an artificial floor in a wind tunnel. The boundary layer development Reynolds number ($Re_{x}$) and the ratio of the cube height ($h$) to the boundary layer thickness ($\unicode[STIX]{x1D6FF}$) are held constant at $Re_{x}=1.8\times 10^{6}$ and $h/\unicode[STIX]{x1D6FF}=0.47$. It is demonstrated that the stagnation point on the upstream side of the cube and the reattachment length in the wake of the cube are independent of the incoming profile for the conditions investigated here. In contrast, the wake length monotonically decreases for increasing turbulence intensity but fixed normalised shear – both quantities measured at the cube height. The wake shortening is a result of heightened turbulence levels promoting wake recovery from high local velocities and the reduction in strength of a dominant shedding frequency.


Author(s):  
Daniel Inman ◽  
David Gonzalez Cuadrado ◽  
Valeria Andreoli ◽  
Jordan Fisher ◽  
Guillermo Paniagua ◽  
...  

Abstract Particle Image Velocimetry (PIV) is a well-established technique for determining the flow direction and velocity magnitude of complex flows. This paper presents a methodology for executing this non-intrusive measurement technique to study a scaled-up turbine vane geometry within an annular cascade at engine-relevant conditions. Custom optical tools such as laser delivery probes and imaging inserts were manufactured to mitigate the difficult optical access of the test section and perform planar PIV. With the use of a burst-mode Nd: YAG laser and Photron FASTCAM camera, the frame straddling technique is implemented to enable short time intervals for the collection of image pairs and velocity fields at 10 kHz. Furthermore, custom image processing tools were developed to optimize the contrast and intensity balance of each image pair to maximize particle number and uniformity, while removing scattering and background noise. The pre-processing strategies significantly improve the vector yield under challenging alignment, seeding, and illumination conditions. With the optical and software tools developed, planar PIV was conducted in the passage of a high-pressure stator row, at mid-span, in an annular cascade. Different Mach and Reynolds number operating conditions were achieved by modifying the temperature and mass flow. With careful spatial calibration, the resultant velocity vector fields are compared with Reynolds Averaged Navier Stokes (RANS) simulations of the vane passage with the same geometry and flow conditions. Uncertainty analysis of the experimental results is also presented and discussed, along with prospects for further improvements.


2017 ◽  
Vol 27 (8) ◽  
pp. 1105-1118 ◽  
Author(s):  
Balázs Both ◽  
Zoltán Szánthó

The purpose of this paper is to investigate the influence of air diffuser’s offset ratio on air velocity and turbulence intensity distribution. Air velocity, turbulence intensity and air temperature measurements were performed in a single office full-scale room in isothermal case. Then the draught rate numbers were calculated to evaluate the discomfort due to draught using Fanger’s model. Different statistical tests were applied to evaluate the measured data. Results showed that the average of air velocity magnitude, turbulence intensity and draught rate was independent of the inlet offset ratio at ankle height. At the knee height and head height of seated and standing person, there was a polynomial connection between the average values and the inlet offset ratio. International standards recommend an average turbulence intensity of 40% to calculate draught rate. The results showed that 70%–80% of measured turbulence intensities were less than the standard value in the investigated range of inlet offset ratio. The draught at ankle height was within category C, while at knee height and head height of seated and standing person, the averaged draught rate numbers meet the category A and B and recommendation of CR 1752. Our results could help designers to calculate the average value of air velocity and turbulence intensity for room air distribution and indoor air comfort design.


Author(s):  
Jose A. Jimenez-Bernal ◽  
Adan Juarez-Montalvo ◽  
Claudia del C. Gutierrez-Torres ◽  
Juan G. Barbosa Saldan˜a ◽  
Luis F. Rodriguez-Jimenez

An experimental study was performed over forward facing step (FFS). It was located within a transparent rectangular acrylic channel (1.4 m in length, 0.1 m in width and 0.02 m in height). The step is 0.01 m in height and 0.1 m in width, and was located 0.7 m downstream (fully developed region); a spanwise aspect ratio, w/h = 10 was used. The experiments were carried out using particle image velocimetry (PIV), which is a non intrusive experimental technique. The experimental water flow conditions include three Reynolds numbers based on the step height, Reh = 1124, 1404 and 1685. These flow conditions correspond to turbulent flow. Measurements were carried out in two zones; zone A begins at x = 8 cm (measured from the step base), and zone B starts at x = 0, y = 0, the visualization region corresponds to an area of 22.76 mm × 16.89 mm. 100 instantaneous velocity fields were obtained for each Reh. A temporal and spatial average was performed to obtain a velocity profile in zone A; likewise, the corresponding turbulence intensity and shear stress distribution were evaluated. The average velocity profile was evaluated for each Reh. Regarding the vortex center location, it was observed that as Reh increases, the y-direction coordinate moves towards bottom of wall channel. For zone B, it was also observed a reduction of the shear stress as Reh increases.


2017 ◽  
Vol 19 (10) ◽  
pp. 1048-1067 ◽  
Author(s):  
Panos Sphicas ◽  
Lyle M Pickett ◽  
Scott A Skeen ◽  
Jonathan H Frank

The collapse or merging of individual plumes of direct-injection gasoline injectors is of fundamental importance to engine performance because of its impact on fuel–air mixing. However, the mechanisms of spray collapse are not fully understood and are difficult to predict. The purpose of this work is to study the aerodynamics in the inter-spray region, which can potentially lead to plume collapse. High-speed (100 kHz) particle image velocimetry is applied along a plane between plumes to observe the full temporal evolution of plume interaction and potential collapse, resolved for individual injection events. Supporting information along a line of sight is obtained using simultaneous diffused back illumination and Mie-scatter techniques. Experiments are performed under simulated engine conditions using a symmetric eight-hole injector in a high-temperature, high-pressure vessel at the “Spray G” operating conditions of the engine combustion network. Indicators of plume interaction and collapse include changes in counter-flow recirculation of ambient gas toward the injector along the axis of the injector or in the inter-plume region between plumes. The effect of ambient temperature and gas density on the inter-plume aerodynamics and the subsequent plume collapse are assessed. Increasing ambient temperature or density, with enhanced vaporization and momentum exchange, accelerates the plume interaction. Plume direction progressively shifts toward the injector axis with time, demonstrating that the plume interaction and collapse are inherently transient.


Sign in / Sign up

Export Citation Format

Share Document