A Rapid Method of Numerical Calculation for Oil Film Temperature in Engine Bearings

Author(s):  
Katsuhiro Ashihara ◽  
Hiromu Hashimoto

In the design and analysis of engine bearings for automobiles, the elastic deformation of bearing surface due to high pressure and temperature of oil film affects significantly on the bearing characteristics. Thermo-elasto-hydrodynamic lubrication analysis (TEHL) is usually used to consider such effects, but a large amount of calculation time is needed to obtain the numerical solution of oil film temperature by solving the conventional type of 3-dimensional energy equation in TEHL. This paper describes a rapid method of numerical calculation of oil film temperature in engine bearings. In this modeling, it is assumed that the temperature distribution in the oil film thickness direction takes the parabolic form. Under such an assumption, averaging the 3-dimensional energy equation over the film thickness, the 2-dimensional energy equation is newly obtained. The numerical solutions of oil film temperature based on the 2-dimensional model are compared with the solutions based on the 3-dimensional model. It is confirmed that the calculation time is remarkably reduced to obtain the oil film temperature with an allowable accuracy. Moreover, the predicted oil film temperature by the 2-dimentional model is compared with measured data, and the good agreement is seen between them.

Author(s):  
Yasuo Harigaya ◽  
Michiyoshi Suzuki ◽  
Masaaki Takiguchi

Abstract This paper describes that an analysis of oil film thickness on a piston ring of diesel engine. The oil film thickness has been performed by using Reynolds equation and unsteady, two-dimensional (2-D) energy equation with a heat generated from viscous dissipation. The temperature distribution in the oil film is calculated by using the energy equation and the mean oil film temperature is computed. Then the viscosity of oil film is estimated by using the mean oil film temperature. The effect of oil film temperature on the oil film thickness of a piston ring was examined. This model has been verified with published experimental results. Moreover, the heat flow at ring and liner surfaces was examined. As a result, the oil film thickness could be calculated by using the viscosity estimated from the mean oil film temperature and the calculated value is agreement with the measured values.


2011 ◽  
Vol 79 ◽  
pp. 293-297
Author(s):  
Li Hong Liu ◽  
Zhan Ni Li ◽  
Han Bing Cao

Applying elastic-hydrodynamic lubrication theory, oil film thickness of tooth surface was studies in accordance with the quasi-steady state. This paper focused on the influence of gear parameters such as gear ratio, module and center distance on the thickness of oil film of tooth flank. The results show, as speed ratio increases, oil film thickness increases significantly. When the number of teeth is fixed, oil film thickness increases significantly with the increase of module. When center distance is fixed, oil film thickness declines greatly with the increase of module in both into meshing and out of meshing points. Therefore when center distance is fixed, less module and more teeth are selected,on the condition that gear intensity is met. By results analyzing, the minimal oil film thickness may occur in the single tooth meshing area and into meshing or out of meshing points.


Author(s):  
Katsuhiro Ashihara ◽  
Hiromu Hashimoto

In the designs and analysis of engine bearings for automobiles, the precise prediction of the lubrication condition in severe condition is important. In the mixed-elasto-hydrodynamic lubrication analysis, the contact between the projections of surface roughness distributed stochastically is usually considered. This paper describes a theoretical model under the mixed lubrication in the microgrooved bearing. In this modeling, it is assumed that the section shape of microgrooved bearing alloy takes the circular arc form. In the part where contact is caused, the contact pressure is calculated by the Hertzian equation. The elastic deformation of the bearing by the mixed pressure with which oil film pressure and contact pressure are mixed by each allotment ratio is considered. Moreover, the balance requirement between the sum total of mixed pressure on bearing surface and the journal load is met. Under such an assumption, the numerical calculation model is newly obtained to predict the bearing performance in the mixed lubrication of microgrooved bearing. The numeric solutions of EHL based on the mixed lubrication are compared with EHL based on the fluid lubrication. The predicted oil film thickness at the center of bearing by the mixed lubrication model is remarkably thin compared with that by the fluid lubrication model. This shows that the load ability of the oil film thickness decreases by generating contact.


2011 ◽  
Vol 199-200 ◽  
pp. 734-738 ◽  
Author(s):  
Qiu Ying Chang ◽  
Xian Liang Zheng ◽  
Qing Liu

Surface texturing has been successfully employed in some tribological applications in order to diminish friction and wear. This technology may be used in a piston ring to decrease the friction and wear of the contact between a piston ring and cylinder liner. A numerical simulation of lubrication between a surface textured piston ring and cylinder liner based on the hydrodynamic lubrication theory was conducted. The influence of surface texture parameters on piston ring lubrication performance was obtained by solving the mathematical equations with a multi-grid method. The results show that under the micro-dimple area density of 5%-40% the minimum oil film thickness increases and the dimensionless friction force decreases with the increasing of it. Under the dimple area density of 40%-60%, the minimum oil film thickness and the dimensionless friction force change slightly. Under various dimple area densities the optimum dimple depth at the given working condition in this paper is about 5µm.


1982 ◽  
Vol 24 (4) ◽  
pp. 173-182 ◽  
Author(s):  
A. Mostofi ◽  
R. Gohar

In this paper, a general numerical solution to the elastohydrodynamic point contact problem is presented for moderate loads and material parameters. Isobars, contours and regression formulae describe how pressure and oil film thickness vary with geometry, material properties, load, and squeeze velocity, when the rolling velocity vector is at various angles to the static contact ellipse long axis. In addition, the EHL behaviour under spin is examined. The theoretical predictions of film thickness compare favourably with other numerical solutions to the point contact problem, as well as with experimental results which use the optical interferometry method to find film thickness and


2016 ◽  
Vol 68 (6) ◽  
pp. 647-657 ◽  
Author(s):  
Kaiyue Li ◽  
Guoding Chen ◽  
Deng Liu

Purpose The analysis of lubricating properties and efficiency is important for aviation high-speed gear. So far, the project of lubricating properties and efficiency are processing under the condition of a given lubricating state, which is still depending on practical experience. This paper aims to mostly focus on the analysis of given lubricating state but lost sight of the relevance of lubrication parameters and lubricating state, which not only makes the analysis of aviation high-speed gear transmission and efficiency fail to trace to practical situation but also has an adverse effect on the reliance and validity of the project. Design/methodology/approach Based on this, the numerical model of spraying oil and oil film spreading is established, and the quantitative relationship between spray lubrication parameters and spreading characteristics of oil film is studied. According to the geometric and mechanical conditions of meshing points and taking the influence of rich-oil/starved-oil lubrication and roughness of teeth surface into consideration, corrected film thickness under condition of elasto-hydrodynamic lubrication and lubricating state of mesh points are analyzed. On this basis, power consumption and efficiency of gear transmission are also calculated by figuring out the solid friction and oil friction separately. Findings Through the research of this thesis, the effect of friction power consumption and efficiency with lubrication parameters is discussed. The effect of lubrication parameters on friction power consumption and efficiency of gear is complex. With the increase of spreading film thickness and film length, the frictional power consumption is less and the efficiency is higher. Originality/value This work provides a systematic technological approach to lubrication design and efficiency calculation of aviation high-speed gear transmission, which has remarkable engineering significance for the accurate lubrication design of the aviation mechanical parts.


Author(s):  
Yasuo Harigaya ◽  
Kazuyoshi Yamasuga ◽  
Michiyoshi Suzuki ◽  
Naoki Iijima ◽  
Masaaki Takiguchi ◽  
...  

A new oil evaporation model was developed, combining a thermo-hydrodynamic lubrication model with a conventional oil evaporation model considering the energy balance on the oil film surface. This model assumed that there was evaporation loss of the oil film on the cylinder wall. In addition, the effects of the oil film thickness and types of lubricant in the evaporated oil from the liner were examined. Moreover, the calculated evaporative oil was compared with the measured oil consumption of a gasoline engine. The relationship between the evaporated oil, the lubricant viscosity, and the oil film thickness were clarified using this model. The results showed that the calculated oil evaporation from the cylinder wall closely corresponded to the measured oil consumption under low load conditions.


2014 ◽  
Vol 1061-1062 ◽  
pp. 653-657
Author(s):  
Gang Liu

The deformation of marine water-lubricated stern bearing which the lining materials are polymer materials is much bigger than the bearing built with metal materials. So, in order to improve the calculate accuracy of elastic hydrodynamic, it is necessary to consider the deformation of the lining. Both pressure and thickness distributions of water film which contrasts with the hydrodynamic lubrication are presented by the Reynolds equation, and combining with the elastic deformation of the stern bearing solved by using the finite element method theory. The result shows that the stern bearing water film pressure of elastic hydrodynamic lubrication is lower than that of hydrodynamic lubrication, while the water film thickness is larger.


2020 ◽  
Vol 12 (6) ◽  
pp. 168781402093084
Author(s):  
Brahim Menacer ◽  
Mostefa Bouchetara

For different operating conditions of an internal combustion engine, the piston–ring–liner compartment represents one of the largest sources of friction and power losses. The aim of this article is to evaluate the effect of the compression ring profile on the main tribological performance of the lubricant in a four-stroke diesel engine. A one-dimensional analysis was developed for the hydrodynamic lubrication between the compression piston ring and the cylinder wall. A numerical method was applied to analyze the influence of different ring geometrical designs during the working cycle on oil film thickness, frictional force, and power losses. Our predicted results were validated with the Takiguchi data of a previous study, and they have shown a good agreement. The results in the current analysis demonstrated that the ring geometry profile, the engine speed, and load have a remarkable effect on oil film thickness, friction force, and friction power losses between the top ring and cylinder liner. Therefore, it would help in reducing friction as well as making a contribution to the improvement of engine performance such as torque, efficiency, and fuel consumption.


Sign in / Sign up

Export Citation Format

Share Document