Investigation Into the Crossflow Microfiltration Process Utilizing Ceramic Membrane Applied to Bacteria Reduction and Clarifying of Ac¸ai Juice

Author(s):  
Renata Natsumi Haneda ◽  
Se´rgio Rodriques Fontes

This paper reports the results of the crossflow microfiltration process applied to the reduction of bacteria and retention of particles in suspension of ac¸ai (Euterpe oleracea Mart.) juice. A commercial membrane of α-alumina (Al2O3) in the form of a tube with 1.2μm of average pore size was utilized to investigate the reduction of the bacteria of ac¸ai juice without using high temperatures (pasteurization). This pore size of the ceramic structure was utilized in an attempt to reduce the polarization phenomenon and improve the permeate flux without utilizing the usual enzymatic treatment made in the microfiltration processes that utilize polymeric membrane (Cianci et al., 2005 and Ushikubo et al., 2006). An anthocyanin concentration was also observed during the microfiltration process followed by suspended particles retention as an indicator of ac¸ai juice clarifying. The Scanning Electronic Microscopy (SEM) was utilized as an essential tool to characterize the morphology of the ceramic micro porous structure and to evaluate the formation of a polarization layer on the membrane surface, while the Optical Microscopy was used to analyze the difference in the characteristics between samples of concentrate and permeate.

Author(s):  
Renata Natsumi Haneda ◽  
Se´rgio Rodrigues Fontes

This paper presents an experimental investigation of the cross-flow microfiltration process applied to the clarifying of ac¸ai (Euterpe oleracea Mart.) juice. Ac¸ai juice is a complex fluid, similar to a suspension of particles (fibers and cellulose) mixed in water, which contains ions of iron, zinc, maganese and pigments, as anthocyanins. In this study, a commercial membrane of α-alumina (Al2O3) in the form of a tube with 1.2μm of average pore size was utilized to investigate the clarifying of juice. This pore size of the ceramic structure was utilized in an attempt to reduce the polarization phenomenon and improve the permeate flux without utilizing the usual enzymatic treatment made in the microfiltration processes. The rheological behaviour of the suspension was investigated in a cone/plate rheometer (model, DVIII-Ultra) and a cylindrical rheometer (model, DVIII+), both by Brookfield/USA, as the shear stress (τ) in function of shear rate (γ) was fitted and analyzed with the power-law and Herschel-Bulkley’s models. All the mixtures showed flow behaviour index values (n) near to one, characterizing Newtonian fluids (pseudo-plastic). The particle size distribution (PSD) of the samples of suspension and permeate were analyzed by APS100 (ultrasound spectroscopy) by Matec/USA. The analysis of the suspension showed the presence of particles of size equal 0.16micra, while the permeate did not present particles. The experiments were performed in a turbulent range higher than 2400 until 57500 and with variation to values of transmembrane pressure from 1 to 4bar; the usual and direct correlation between transmembrane flux and transmembrane pressure was not observed in the experiments and a new correlation to the dimensionless of TMP (trans-membrane pressure) and Reynolds (Re) was presented.


2017 ◽  
Vol 61 (3) ◽  
pp. 206 ◽  
Author(s):  
Sonia Bouzid Rekik ◽  
Jamel Bouaziz ◽  
Andre Deratani ◽  
Semia Beklouti

The focus of this work is to assess the quality of porous membranes prepared from naturally occurring kaolin clays and to evaluate the performance of tubular ceramic membranes treating integrated raw effluents from seafood industry. This material has been chosen due to its natural abundance, its non-toxicity, low cost and its valuable properties. The preparation and characterization of porous tubular ceramic membranes, using kaolin powder with and without corn starch as poreforming agent, were reported. SEM photographs indicated that the membrane surface was homogeneous. The effects of material compositions, additives and the relatively lower sintering temperature, ranging from 1100° to 1250°C, on porosity, average pore size, pore-size distribution and mechanical strength of membranes have been investigated. A correlation between microstructure and mechanical properties of membranes has been discussed. The performance of the novel ceramic membranes thus obtained was determined by evaluating both the water permeability and rejection. The obtained membrane was used to treat cuttlefish effluents generated from the conditioning seawater product industry which consumes a great amount of water. Cross-flow microfiltration was performed then, in order to reduce the turbidity and chemical oxygen demand (COD). 


Membranes ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 290
Author(s):  
Saad A. Aljlil

In this study, a method for fabricating tubular ceramic membranes via extrusion using economical and locally available bentonite–silica sand and waste palm leaves was developed as a tool for conducting the necessary task of purifying water polluted with oil and suspended solid materials produced via various industrial processes. The developed tubular ceramic membranes were found to be highly efficient at separating the pollutants from water. The properties of the fabricated membrane were evaluated via mechanical testing, pore size distribution analysis, and contact angle measurements. The water contact angle of the fabricated membrane was determined to be 55.5°, which indicates that the membrane surface is hydrophilic, and the average pore size was found to be 66 nm. The membrane was found to demonstrate excellent corrosion resistance under acidic as well as basic conditions, with weight losses of less than 1% in each case. The membrane surface was found to be negatively charged and it could strongly repulse the negatively charged fine bentonite particles and oil droplets suspended in the water, thereby enabling facile purification through backwashing. The obtained ceramic membranes with desirable hydrophilic properties can thus serve as good candidates for use in ultrafiltration processes.


Author(s):  
E. Yuliwati ◽  
H. Porawati ◽  
Elfidiah Elfidiah ◽  
A. Melani

Polyvinylidene fluoride (PVDF) composite membranes were prepared via phase inversion method by dispersing titanium dioxide (TiO2) in the dope solution. It is aimed to study the effects of TiO2 on the membrane surface properties and thus its separation performance. The PVDF membranes modified by various TiO2 contents were characterized with respect to cross-sectional structure, average pore size, effective porosity, hydrophilicity, permeability and rejection. Maximum values of membrane hydrophilicity, membrane porosity and average pore size were achieved upon addition of 1.95% TiO2. It is found that changes in the membrane surface properties are closely corresponded with the membrane fouling. The maximum flux and rejection of organic pollutants from palm oil wastewater were recorded at 82.5 L/m2 h and 98.8 %, respectively using PVDF composite membrane incorporated with 1.95% TiO2.


2011 ◽  
Vol 418-420 ◽  
pp. 1980-1983
Author(s):  
Peng Wei Xu ◽  
Wei Qiu Huang ◽  
Qi Zhang ◽  
Bao Zhu Yang ◽  
Jing Zhong

DMF wastewater from the PU synthetic leather industries was filtrated by ZrO2 micro-filtration membranes with an average pore size of 0.2μm. The membrane fouling mechanism was analyzed by resistance-in series model. The results indicated that the resistance from the particles sedimentation on membrane surface accounting for 76% of the total resistances. The technology of backwashing was a stable, valid and reusable method to recover the membrane flux in the micro-filtration. During backwashing, the reverse flow through the membrane removes the concentration polarization and cake or gel layers from the membrane surface. The effect of the backwashing conditions on the flux was studied. The obtained optimization conditions were as follows: backwashing pressure 0.6 MPa, backwashing time 5s and the backwashing interval 20min. The permeate flux could be raised about 50% compared with that without backwashing.


2010 ◽  
Vol 62 (3) ◽  
pp. 547-555 ◽  
Author(s):  
B. I. Harman ◽  
H. Koseoglu ◽  
N. O. Yigit ◽  
E. Sayilgan ◽  
M. Beyhan ◽  
...  

The main objective of this work was to investigate the effectiveness of ceramic ultrafiltration (UF) membranes with different pore sizes in removing natural organic matter (NOM) from model solutions and drinking water sources. A lab-scale, cross-flow ceramic membrane test unit was used in all experiments. Two different single-channel tubular ceramic membrane modules were tested with average pore sizes of 4 and 10 nm. The impacts of membrane pore size and pressure on permeate flux and the removals of UV280 nm absorbance, specific UV absorbance (SUVA280 nm), and dissolved organic carbon (DOC) were determined. Prior to experiments with model solutions and raw waters, clean water flux tests were conducted. UV280 absorbance reductions ranged between 63 and 83% for all pressures and membranes tested in the raw water. More than 90% of UV280 absorbance reduction was consistently achieved with both membranes in the model NOM solutions. Such high UV absorbance reductions are advantageous due to the fact that UV absorbing sites of NOM are known to be one of the major precursors to disinfection by-products (DBP) such as trihalomethanes and haloacetic acids. For both UF membranes, the ranges of DOC removals in the raw water and model NOM solutions were 55–73% and 79–91%, respectively. SUVA280 value of the raw water decreased from 2 to about 1.5 L/mg-m by both membranes. For the model solutions, SUVA280 values were consistently reduced to ≤1 L/mg-m levels after membrane treatment. As the SUVA280 value of the NOM source increased, the extent of SUVA280 reduction and DOC removal by the tested ceramic UF membranes also increased. The results overall indicated that ceramic UF membranes, especially the one with 4 nm average pore size, appear to be effective in removing organic matter and DBP precursors from drinking water sources with relatively high and sustainable permeate flux values.


2014 ◽  
Vol 974 ◽  
pp. 247-251
Author(s):  
Asmadi Ali ◽  
Rosli Mohd Yunus ◽  
Mohamad Awang ◽  
Sofiah Hamzah

Rheological factor such as shear rate during membrane fabrication process has an effect on structural properties and performance of membranes. Flat sheet asymmetric polysulfone/cellulose acetate phthalate/polyvinylpyrrolidone (PSf/CAP/PVP) blend membranes were prepared by using an automatic casting machine at different shear rates in the range of 42.0 to 210.0 s-1. The blend membranes prepared at different shear rate were characterized in terms of its structural properties (molecular weight cut-off (MWCO) and average pore size) and performance (proteins separation). The results showed that increasing the shear rate from 42.0 to105 s-1 has decreased MWCO and average pore size of the blend membranes which then reduced protein solution permeate fluxes and increased proteins rejection of PSf/CAP/PVP blend membranes. However, further increasing the shear rate to 210.0 s-1 has resulted in an increase in MWCO and average pore size and consequently increased protein solution permeate flux but decreased proteins rejection.


2017 ◽  
Vol 54 (3) ◽  
pp. 181-201
Author(s):  
Rebecca Johnson ◽  
Mark Longman ◽  
Brian Ruskin

The Three Forks Formation, which is about 230 ft thick along the southern Nesson Anticline (McKenzie County, ND), has four “benches” with distinct petrographic and petrophysical characteristics that impact reservoir quality. These relatively clean benches are separated by slightly more illitic (higher gamma-ray) intervals that range in thickness from 10 to 20 ft. Here we compare pore sizes observed in scanning electron microscope (SEM) images of the benches to the total porosity calculated from binned precession decay times from a suite of 13 nuclear magnetic resonance (NMR) logs in the study area as well as the logarithmic mean of the relaxation decay time (T2 Log Mean) from these NMR logs. The results show that the NMR log is a valid tool for quantifying pore sizes and pore size distributions in the Three Forks Formation and that the T2 Log Mean can be correlated to a range of pore sizes within each bench of the Three Forks Formation. The first (shallowest) bench of the Three Forks is about 35 ft thick and consists of tan to green silty and shaly laminated dolomite mudstones. It has good reservoir characteristics in part because it was affected by organic acids and received the highest oil charge from the overlying lower Bakken black shale source rocks. The 13 NMR logs from the study area show that it has an average of 7.5% total porosity (compared to 8% measured core porosity), and ranges from 5% to 10%. SEM study shows that both intercrystalline pores and secondary moldic pores formed by selective partial dissolution of some grains are present. The intercrystalline pores are typically triangular and occur between euhedral dolomite rhombs that range in size from 10 to 20 microns. The dolomite crystals have distinct iron-rich (ferroan) rims. Many of the intercrystalline pores are partly filled with fibrous authigenic illite, but overall pore size typically ranges from 1 to 5 microns. As expected, the first bench has the highest oil saturations in the Three Forks Formation, averaging 50% with a range from 30% to 70%. The second bench is also about 35 ft thick and consists of silty and shaly dolomite mudstones and rip-up clast breccias with euhedral dolomite crystals that range in size from 10 to 25 microns. Its color is quite variable, ranging from green to tan to red. The reservoir quality of the second bench data set appears to change based on proximity to the Nesson anticline. In the wells off the southeast flank of the Nesson anticline, the water saturation averages 75%, ranging from 64% to 91%. On the crest of the Nesson anticline, the water saturation averages 55%, ranging from 40% to 70%. NMR porosity is consistent across the entire area of interest - averaging 7.3% and ranging from 5% to 9%. Porosity observed from samples collected on the southeast flank of the Nesson Anticline is mainly as intercrystalline pores that have been extensively filled with chlorite clay platelets. In the water saturated southeastern Nesson Anticline, this bench contains few or no secondary pores and the iron-rich rims on the dolomite crystals are less developed than those in the first bench. The chlorite platelets in the intercrystalline pores reduce average pore size to 500 to 800 nanometers. The third bench is about 55 ft thick and is the most calcareous of the Three Forks benches with 20 to 40% calcite and a proportionate reduction in dolomite content near its top. It is also quite silty and shaly with a distinct reddish color. Its dolomite crystals are 20 to 50 microns in size and partly abraded and dissolved. Ferroan dolomite rims are absent. This interval averages 7.1% porosity and ranges from 5% to 9%, but the pores average just 200 nanometers in size and occur mainly as microinterparticle pores between illite flakes in intracrystalline pores in the dolomite crystals. This interval has little or no oil saturation on the southern Nesson Anticline. Unlike other porosity tools, the NMR tool is a lithology independent measurement. The alignment of hydrogen nuclei to the applied magnetic field and the subsequent return to incoherence are described by two decay time constants, longitudinal relaxation time (T1) and transverse relaxation time (T2). T2 is essentially the rate at which hydrogen nuclei lose alignment to the external magnetic field. The logarithmic mean of T2 (T2 Log Mean) has been correlated to pore-size distribution. In this study, we show that the assumption that T2 Log Mean can be used as a proxy for pore-size distribution changes is valid in the Three Forks Formation. While the NMR total porosity from T2 remains relatively consistent in the three benches of the Three Forks, there are significant changes in the T2 Log Mean from bench to bench. There is a positive correlation between changes in T2 Log Mean and average pore size measured on SEM samples. Study of a “type” well, QEP’s Ernie 7-2-11 BHD (Sec. 11, T149N, R95W, McKenzie County), shows that the 1- to 5-micron pores in the first bench have a T2 Log Mean relaxation time of 10.2 msec, whereas the 500- to 800-nanometer pores in the chlorite-filled intercrystalline pores in the second bench have a T2 Log Mean of 4.96 msec. This compares with a T2 Log Mean of 2.86 msec in 3rd bench where pores average just 200 nanometers in size. These data suggest that the NMR log is a useful tool for quantifying average pore size in the various benches of the Three Forks Formation.


2021 ◽  
Vol 13 (14) ◽  
pp. 7593
Author(s):  
Farooq Khan Niazi ◽  
Malik Adeel Umer ◽  
Ashfaq Ahmed ◽  
Muhammad Arslan Hafeez ◽  
Zafar Khan ◽  
...  

Ultrafiltration membranes offer a progressive and efficient means to filter out various process fluids. The prime factor influencing ultrafiltration to a great extent is the porosity of the membranes employed. Regarding membrane development, alumina membranes are extensively studied due to their uniform porosity and mechanical strength. The present research work is specifically aimed towards the investigation of nanoporous alumina membranes, as a function of sintering parameters, on ultrafiltration performance. Alumina membranes are fabricated by sintering at various temperatures ranging from 1200–1300 °C for different holding times between 5–15 h. The morphological analysis, conducted using Scanning electron microscopy (SEM), revealed a homogeneous distribution of pores throughout the surface and cross-section of the membranes developed. It was observed that an increase in the sintering temperature and time resulted in a gradual decrease in the average pore size. A sample with an optimal pore size of 73.65 nm achieved after sintering at 1250 °C for 15 h, was used for the evaluation of ultrafiltration performance. However, the best mechanical strength and highest stress-bearing ability were exhibited by the sample sintered at 1300 °C for 5 h, whereas the sample sintered at 1250 °C for 5 h displayed the highest strain in terms of compression. The selected alumina membrane sample demonstrated excellent performance in the ultrafiltration of sugarcane juice, compared to the other process liquids.


Sign in / Sign up

Export Citation Format

Share Document