Simulation of Blank Design for Blades of Francis Turbines

Author(s):  
Zhengkun Feng ◽  
Henri Champliaud ◽  
Michel Sabourin ◽  
Sebastien Morin

The metal pressing process which is widely used in many industries has advantages over casting process for producing large and thick blades of Francis turbine. For the design of pressing process, blank design should be firstly performed to determine the dimension of the flat blank. In fact, the traditional trial and error approach is not applicable for the blade design for Francis turbines that is not standard because of the different hydraulic characteristics of a hydropower plant from site to site. The powerful computing technology makes it possible to desgn optimum blanks by numerical modeling and simulation. In this paper, the multi-step inverse finite element approach is investigated for blank design and an elasto-plastic model has been built by using the well-known software ANSYS. Unfolding tests with cylindrical sections have been carried out and the numerical results agree well with the analytical results. Thereafter, a large and thick blade of Francis turbine for hydropower plants has been successfully unfolded by the FE model. Finally, for ensuring the machining of the blade after the pressing process, a new contour is obtained by extending the boundary of the flat blank provided by the FE model.

Author(s):  
Zhengkun Feng ◽  
Henri Champliaud ◽  
Louis Mathieu ◽  
Michel Sabourin

Hot pressing process is widely used in automotive, shipbuilding, energy production and civil engineering. However, the trial and error technique that is intensive time and energy consuming is still used. Particularly, the design of Francis turbines of hydropower plants is not standard, but variable from site to site due to hydraulic conditions and cost of energy. As a result, the blade hydraulic profile of each Francis turbine is different. The blades, one of the key components of Francis turbine runners, are produced in small batches and the setup of the dedicated punch and die increases significantly the unit production costs. In this paper, the blade unfolding process for optimal blank design will be firstly presented, and then a hot pressing process for very thick plates is proposed. The pressing process of high strength steel at hot temperature is characterized by thermo-mechanical behaviors, three-dimensional unsteady deformation, high nonlinearity, continuous local forming. The analyses of residual stress distribution and applied forces are carried out.


2020 ◽  
Vol 12 (4) ◽  
pp. 1676 ◽  
Author(s):  
Zaher Mundher Yaseen ◽  
Ameen Mohammed Salih Ameen ◽  
Mohammed Suleman Aldlemy ◽  
Mumtaz Ali ◽  
Haitham Abdulmohsin Afan ◽  
...  

Dam and powerhouse operation sustainability is a major concern from the hydraulic engineering perspective. Powerhouse operation is one of the main sources of vibrations in the dam structure and hydropower plant; thus, the evaluation of turbine performance at different water pressures is important for determining the sustainability of the dam body. Draft tube turbines run under high pressure and suffer from connection problems, such as vibrations and pressure fluctuation. Reducing the pressure fluctuation and minimizing the principal stress caused by undesired components of water in the draft tube turbine are ongoing problems that must be resolved. Here, we conducted a comprehensive review of studies performed on dams, powerhouses, and turbine vibration, focusing on the vibration of two turbine units: Kaplan and Francis turbine units. The survey covered several aspects of dam types (e.g., rock and concrete dams), powerhouse analysis, turbine vibrations, and the relationship between dam and hydropower plant sustainability and operation. The current review covers the related research on the fluid mechanism in turbine units of hydropower plants, providing a perspective on better control of vibrations. Thus, the risks and failures can be better managed and reduced, which in turn will reduce hydropower plant operation costs and simultaneously increase the economical sustainability. Several research gaps were found, and the literature was assessed to provide more insightful details on the studies surveyed. Numerous future research directions are recommended.


Water ◽  
2021 ◽  
Vol 13 (18) ◽  
pp. 2459
Author(s):  
Florentina Bunea ◽  
Gabriel Dan Ciocan ◽  
Diana Maria Bucur ◽  
Georgiana Dunca ◽  
Adrian Nedelcu

The environmentally friendly concept in terms of water quality represents a condition for developing hydropower plants all around the world. Since 2017, hydropower has represented more than 70% of all renewable energy production and it is essential for the integration of the other renewable sources of energy and for regulation of the grid. To maintain the “green” label concerning the dissolved oxygen level (6 mg DO/L), the energy suppliers should respond to environmental concerns about the operation of hydropower plants. In the context of sustainable development, the ecological degradation of rivers is unacceptable due to the implementation of a hydropower plant on the watercourse. For deep reservoirs or tropical regions, the oxygen level in the water downstream of the hydropower plants may be low and affect the aquatic life for many kilometers downstream. This paper presents a new aeration system for discharged water from hydropower plants that provides water aeration with minimum energy consumption. The influence of the aeration process on the turbine operation and efficiency is analyzed. Experimental measurements are carried out on site on a small Francis turbine. The influence of the aeration process on the turbine mechanical performances (vibration level and relative displacement) and hydraulic performances (turbine efficiency, power output, and pressure fluctuation) is analyzed. The results showed that the impact of the aeration device implementation and operation over the energetic characteristics of the turbine is in the efficiency measurements accuracy range. The aeration through this device did not influence the turbine operation (vibration, level, or pressure fluctuations).


Author(s):  
Mohammad Airaj Firdaws Sadiq ◽  
Najib Rahman Sabory ◽  
Mir Sayed Shah Danish ◽  
Tomonobu Senjyu

Afghanistan hosts the Hindu Kush, an extension of the Himalaya mountains that act as water sources for five major rivers flowing through Afghanistan. Most of these rivers provide promise for the construction of water dams and installment of micro hydropower plants (MHP). Although civil war and political strife continue to threaten the country for more than four decades, the Afghan government introduced strategic plans for the development of the country. In 2016 Afghanistan introduced the Afghanistan National Peace and Development (ANPD) Framework at Brussels de-signed to support Afghanistan’s progress towards achieving the SDGs (Sustainable Development Goals). This study discussed the 7th Goal (ensuring access to affordable, reliable, and sustainable energy for all) and 8th Goal (promoting sustained, inclusive and sustainable economic growth, full and productive employment and decent work for all) alignment in Afghanistan. The Afghan gov-ernment acknowledges its responsibility to provide electricity for all of its citizens, but this can only be achieved if the government can secure a reliable source of energy. Afghanistan’s mountainous terrain provides a challenge to build a central energy distribution system. Therefore this study looks for alternative solutions to the energy problems in Afghanistan and explores feasibility of micro-hydropower plant installations in remote areas. This study evaluated socio-economic im-pacts of micro-hydropower plants in the life of average residents. We focused on one example of a micro hydropower plant located in Parwan, conducted interviews with local residents, and gath-ered on-site data. The findings in this study can help policymakers to analyze the effects of devel-opment projects in the social and economic life of residents. It will encourage the government and hopefully the private sector to invest in decentralized energy options, while the country is facing an ever-growing energy demand.


Processes ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 266
Author(s):  
Md Rakibuzzaman ◽  
Sang-Ho Suh ◽  
Hyoung-Ho Kim ◽  
Youngtae Ryu ◽  
Kyung Yup Kim

Discharge water from fish farms is a clean, renewable, and abundant energy source that has been used to obtain renewable energy via small hydropower plants. Small hydropower plants may be installed at offshore fish farms where suitable water is obtained throughout the year. It is necessary to meet the challenges of developing small hydropower systems, including sustainability and turbine efficiency. The main objective of this study was to investigate the possibility of constructing a small hydropower plant and develop 100 kW class propeller-type turbines in a fish farm with a permanent magnet synchronous generator (PMSG). The turbine was optimized using a computer simulation, and an experiment was conducted to obtain performance data. Simulation results were then validated with experimental results. Results revealed that streamlining the designed shape of the guide vane reduced the flow separation and improved the efficiency of the turbine. Optimizing the shape of the runner vane decreased the flow rate, reducing the water power and increasing the efficiency by about 5.57%. Also, results revealed that tubular or cross-flow turbines could be suitable for use in fish farm power plants, and the generator used should be waterproofed to avoid exposure to seawater.


Water ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1041
Author(s):  
Francisco Javier Sanz-Ronda ◽  
Juan Francisco Fuentes-Pérez ◽  
Ana García-Vega ◽  
Francisco Javier Bravo-Córdoba

Fish need to move upstream and downstream through rivers to complete their life cycles. Despite the fact that fishways are the most commonly applied solution to recover longitudinal connectivity, they are not considered viable for downstream migration. Therefore, alternative facilities are recommended to facilitate downstream migration. However, a few recent studies have disagreed with this general assumption, showing the potential for bidirectional movements. This study advances our understanding of the potential of fishways for downstream migration by studying their efficiency in a run-of-the-river hydropower plant in the Duero River (Spain). To achieve this, downstream movements of the Iberian barbel (n = 299) were monitored in a stepped fishway for two years with passive integrated transponder (PIT)-tag technology, considering the effect of fish origin and release zone. The results showed that 24.9% of barbels descended through the fishway, with the origin and release zone affecting the fishway location. In addition, downstream movements were observed throughout the whole year, except in winter. The study concludes that, under specific scenarios, fishways could act as safe alternative routes for downstream migration.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Alberto Scotti ◽  
Roberta Bottarin

AbstractThe present dataset contains information about aquatic macroinvertebrates and environmental variables collected before and after the implementation of a small “run-of-river” hydropower plant on the Saldur stream, a glacier-fed stream located in the Italian Central-Eastern Alps. Between 2015 and 2019, with two sampling events per year, we collected and identified 34,836 organisms in 6 sampling sites located within a 6 km stretch of the stream. Given the current boom of the hydropower sector worldwide, and the growing contribution of small hydropower plants to energy production, data here included may represent an important – and long advocated – baseline to assess the effects that these kinds of powerplants have on the riverine ecosystem. Moreover, since the Saldur stream is part of the International Long Term Ecological Research network, this dataset also constitutes part of the data gathered within this research programme. All samples are preserved at Eurac Research facilities.


2010 ◽  
Vol 90 (3) ◽  
pp. 189-206 ◽  
Author(s):  
Mila Pavlovic ◽  
Rajko Golic ◽  
Dejan Sabic

The territory of the municipality of Mali Zvornik is, from the aspect of morphology and spatial-functional structure, a heterogeneous area. It is located in the valley of the Drina River and in hilly-mountainous part of Podrinjske mountains. The area of the municipality is 184 km?, with 14076 inhabitants (2002). The importance of water resources for the development of the municipality, particularly of the hydropower plant (HPP) ?Zvornik?, is analyzed in this paper. Inadequate use of hydro-energetic potential, possibilities for construction of new hydropower plants and economic reasons for their construction are also emphasized. The priorities of the development of hydraulic engineering are defined in relation to morphological and hydrological conditions. They refer to increase of power of the HPP ?Zvornik? and construction of small-scale hydropower plants in hilly-mountainous part of municipality. Considering depopulation processes in the villages of Mali Zvornik, hydraulic engineering, together with agriculture, forestry, exploitation of mineral goods and tourism, can be one of the factors of demographic and economic revitalization of this area.


2022 ◽  
Vol 10 (01) ◽  
pp. 2888-2904
Author(s):  
Dr. MUTESI Jean Claude

The study investigated the socio-economic and environmental impact of hydropower projects in Rwanda with a case study of Rubagabaga hydropower Ltd operating from Nyabihu District. It examines the impact of a socio-economic and environmental hydropower plant in Rwanda, identifies the challenge hydropower plants face in Rwanda, and finally investigates the relationship between hydro powers and their socio-economic impact in Rwanda? In this research, the quantitative research design is based on statistical data of the research that was used with quantitative and qualitative methods. Questionnaires were used to collect data. The target population of this study was made up of 252 participants including 154 respondents all from ten different villages surrounding the Rubagabaga plant in Nyabihu District. Data were analyzed using descriptive and correlation analysis and tables that were interpreted to confirm or deny the relevance of the main and specific objectives. Based on results from table no.16 demonstrates that the beta= 0.397 with the t value of 2.333 and the p-value of 0. 021. Since the p-value is less than 0.05, the researcher rejected the null hypothesis and considered it an alternate. There is a strong positive relationship between environmental assessment of hydropower plant projects and socio-environmental sustenance and development. In a nutshell, the researcher has rejected the null hypothesis and considered its alternate. Community structure and dynamics have a positive influence on socio-environmental sustenance and development. Table no.16 shows that beta= 0.341 with the t value of 2.668 as the p-value was 0.009. Since the p-value is less than 0.05. Therefore, the researcher rejected the null hypothesis and considered it an alternate. According to table no.21, the changes in community structure and dynamics of the hydropower plant project cause the increase of 0.341 (34.1%) of the socio-environment sustenance and development. The ratio of beta modal results for the t value expressed t=2.66 hence the probability value is significant on socio-environment sustenance and development noting that sig. =0.009. Carefully, the researcher has rejected the null hypothesis and considered its alternate. With this in mind, community structure and dynamics has a positive influence on socio-environmental sustenance and development. Table no.16 has shown beta= 0.478 with the t value of 4.543 as the p-value was 0.000 which is less than 0.05. According to the findings, the changes in government policies, stability, and support of hydropower plant project causes the increase of 0.478 (47.80%) of the socio-environment sustenance and development. The ratio of beta modal results for the t value expressed t= 4.54 hence the probability value is significant on socio-environment sustenance and development noting that sig. =0.000.


2021 ◽  
Vol 8 ◽  
Author(s):  
Claire Kathryn Aksamit ◽  
Mauro Carolli ◽  
Davide Vanzo ◽  
Christine Weber ◽  
Martin Schmid

As the demand for hydroelectricity progresses worldwide, small hydropower operators are increasingly examining the feasibility of using existing infrastructure (e.g., settling basins) in run-of-the-river schemes for intermittent power production. Such flexible production causes short-term discharge fluctuations (hydropeaking) in downstream reaches with potential adverse effects for the sensitive fauna and flora in alpine streams. In an experimental field study on a previously unregulated section of the upper Rhone River (Switzerland), we measured density and composition of macroinvertebrate drift in two habitats (riffle, pool) following a 15-minute hydropeaking wave. The experimental hydropeaking was replicated five times over 14 days with decreasing recovery times between peaks (8, 3, 2 days, and 24 h), and drift measurements were compared with kick samples for the benthic community. Results from the kick sampling showed that benthic macroinvertebrate abundance and composition did not significantly change between the experimental peaks. There were habitat specific reactions in macroinvertebrate drift to hydropeaking, with the pool experiencing more pronounced drift abundances than the riffle. Overall, drift abundance was not significantly correlated with recovery time, but results indicate taxa-specific differences. This research advocates for the importance of completing more in-situ field experiments in order to better understand the ecological impact of flexible power production in small hydropower plants.


Sign in / Sign up

Export Citation Format

Share Document