scholarly journals Hydraulic Turbine Performance Assessment with Implementation of an Innovative Aeration System

Water ◽  
2021 ◽  
Vol 13 (18) ◽  
pp. 2459
Author(s):  
Florentina Bunea ◽  
Gabriel Dan Ciocan ◽  
Diana Maria Bucur ◽  
Georgiana Dunca ◽  
Adrian Nedelcu

The environmentally friendly concept in terms of water quality represents a condition for developing hydropower plants all around the world. Since 2017, hydropower has represented more than 70% of all renewable energy production and it is essential for the integration of the other renewable sources of energy and for regulation of the grid. To maintain the “green” label concerning the dissolved oxygen level (6 mg DO/L), the energy suppliers should respond to environmental concerns about the operation of hydropower plants. In the context of sustainable development, the ecological degradation of rivers is unacceptable due to the implementation of a hydropower plant on the watercourse. For deep reservoirs or tropical regions, the oxygen level in the water downstream of the hydropower plants may be low and affect the aquatic life for many kilometers downstream. This paper presents a new aeration system for discharged water from hydropower plants that provides water aeration with minimum energy consumption. The influence of the aeration process on the turbine operation and efficiency is analyzed. Experimental measurements are carried out on site on a small Francis turbine. The influence of the aeration process on the turbine mechanical performances (vibration level and relative displacement) and hydraulic performances (turbine efficiency, power output, and pressure fluctuation) is analyzed. The results showed that the impact of the aeration device implementation and operation over the energetic characteristics of the turbine is in the efficiency measurements accuracy range. The aeration through this device did not influence the turbine operation (vibration, level, or pressure fluctuations).

2022 ◽  
Vol 10 (01) ◽  
pp. 2888-2904
Author(s):  
Dr. MUTESI Jean Claude

The study investigated the socio-economic and environmental impact of hydropower projects in Rwanda with a case study of Rubagabaga hydropower Ltd operating from Nyabihu District. It examines the impact of a socio-economic and environmental hydropower plant in Rwanda, identifies the challenge hydropower plants face in Rwanda, and finally investigates the relationship between hydro powers and their socio-economic impact in Rwanda? In this research, the quantitative research design is based on statistical data of the research that was used with quantitative and qualitative methods. Questionnaires were used to collect data. The target population of this study was made up of 252 participants including 154 respondents all from ten different villages surrounding the Rubagabaga plant in Nyabihu District. Data were analyzed using descriptive and correlation analysis and tables that were interpreted to confirm or deny the relevance of the main and specific objectives. Based on results from table no.16 demonstrates that the beta= 0.397 with the t value of 2.333 and the p-value of 0. 021. Since the p-value is less than 0.05, the researcher rejected the null hypothesis and considered it an alternate. There is a strong positive relationship between environmental assessment of hydropower plant projects and socio-environmental sustenance and development. In a nutshell, the researcher has rejected the null hypothesis and considered its alternate. Community structure and dynamics have a positive influence on socio-environmental sustenance and development. Table no.16 shows that beta= 0.341 with the t value of 2.668 as the p-value was 0.009. Since the p-value is less than 0.05. Therefore, the researcher rejected the null hypothesis and considered it an alternate. According to table no.21, the changes in community structure and dynamics of the hydropower plant project cause the increase of 0.341 (34.1%) of the socio-environment sustenance and development. The ratio of beta modal results for the t value expressed t=2.66 hence the probability value is significant on socio-environment sustenance and development noting that sig. =0.009. Carefully, the researcher has rejected the null hypothesis and considered its alternate. With this in mind, community structure and dynamics has a positive influence on socio-environmental sustenance and development. Table no.16 has shown beta= 0.478 with the t value of 4.543 as the p-value was 0.000 which is less than 0.05. According to the findings, the changes in government policies, stability, and support of hydropower plant project causes the increase of 0.478 (47.80%) of the socio-environment sustenance and development. The ratio of beta modal results for the t value expressed t= 4.54 hence the probability value is significant on socio-environment sustenance and development noting that sig. =0.000.


2020 ◽  
Vol 20 (7) ◽  
pp. 2530-2546
Author(s):  
Mohammad Reza Goodarzi ◽  
Hamed Vagheei ◽  
Rabi H. Mohtar

Abstract The interdependent fundamental systems, water and energy, face abundant challenges, one of which is climate change, which is expected to aggravate water and energy securities. The hydropower industry's benefits have led to its development and growth around the world. Nonetheless, climate change is expected to disturb the future performance of hydropower plants. This study looks at the Seimareh Hydropower Plant to assess the potential vulnerability of hydropower plants to climate change. Results indicate that climate change will affect the area's hydrological variables and suggest an increase in temperatures and decrease in precipitation during a 30-year future period (2040–2069). It is predicted that Seimareh Dam's inflow will decrease by between 5.2% and 13.4% in the same period. These hydrological changes will affect the Seimareh plant's performance: current predictions are that the total energy produced will decrease by between 8.4% and 16.3%. This research indicates the necessity of considering climate change impacts in designing and maintaining hydraulic structures to reach their optimal performance.


2020 ◽  
Vol 12 (4) ◽  
pp. 1676 ◽  
Author(s):  
Zaher Mundher Yaseen ◽  
Ameen Mohammed Salih Ameen ◽  
Mohammed Suleman Aldlemy ◽  
Mumtaz Ali ◽  
Haitham Abdulmohsin Afan ◽  
...  

Dam and powerhouse operation sustainability is a major concern from the hydraulic engineering perspective. Powerhouse operation is one of the main sources of vibrations in the dam structure and hydropower plant; thus, the evaluation of turbine performance at different water pressures is important for determining the sustainability of the dam body. Draft tube turbines run under high pressure and suffer from connection problems, such as vibrations and pressure fluctuation. Reducing the pressure fluctuation and minimizing the principal stress caused by undesired components of water in the draft tube turbine are ongoing problems that must be resolved. Here, we conducted a comprehensive review of studies performed on dams, powerhouses, and turbine vibration, focusing on the vibration of two turbine units: Kaplan and Francis turbine units. The survey covered several aspects of dam types (e.g., rock and concrete dams), powerhouse analysis, turbine vibrations, and the relationship between dam and hydropower plant sustainability and operation. The current review covers the related research on the fluid mechanism in turbine units of hydropower plants, providing a perspective on better control of vibrations. Thus, the risks and failures can be better managed and reduced, which in turn will reduce hydropower plant operation costs and simultaneously increase the economical sustainability. Several research gaps were found, and the literature was assessed to provide more insightful details on the studies surveyed. Numerous future research directions are recommended.


2021 ◽  
Author(s):  
Lucia Bytčanková ◽  
Ján Rumann ◽  
Peter Dušička

AbstractThe structural parts of intake structures directly affect the flow velocity distribution in the turbine intake of small hydropower plants, where inhomogeneous flow leads to uneven load of the turbine units causing operational problems. A 2D numerical flow modeling was used for investigations of the flow in an intake structure of a low-head small hydropower plant. The effects of shape changes of the intake structure on the flow velocity distribution in the turbine intakes were investigated and assessed proving significant effect of the shapes of the intake structure on the flow homogeneity in turbine intakes.


Author(s):  
Zhengkun Feng ◽  
Henri Champliaud ◽  
Michel Sabourin ◽  
Sebastien Morin

The metal pressing process which is widely used in many industries has advantages over casting process for producing large and thick blades of Francis turbine. For the design of pressing process, blank design should be firstly performed to determine the dimension of the flat blank. In fact, the traditional trial and error approach is not applicable for the blade design for Francis turbines that is not standard because of the different hydraulic characteristics of a hydropower plant from site to site. The powerful computing technology makes it possible to desgn optimum blanks by numerical modeling and simulation. In this paper, the multi-step inverse finite element approach is investigated for blank design and an elasto-plastic model has been built by using the well-known software ANSYS. Unfolding tests with cylindrical sections have been carried out and the numerical results agree well with the analytical results. Thereafter, a large and thick blade of Francis turbine for hydropower plants has been successfully unfolded by the FE model. Finally, for ensuring the machining of the blade after the pressing process, a new contour is obtained by extending the boundary of the flat blank provided by the FE model.


2021 ◽  
Author(s):  
Daniel Buček ◽  
Martin Orfánus ◽  
Peter Dušička ◽  
Peter Šulek

AbstractVariable renewable energy sources, e.g. solar and wind power, require flexible management of energy sources to stabilize the power grid. Immediate changes in power generation and power usage is compensated for by the operation of hydropower plants. This subsequently leads to frequent flow fluctuations – hydropeaking downstream of the hydropower plant. This study examines the short-term impacts of hydropeaking of hydropower plants on the sediment transport using numerical morphodynamic model. The model is calibrated to field measurements and subjected to various hydropeaking scenarios on daily to sub-daily scale. Based on this study, the effect of hydropeaking of hydropower plant 23.42 km upstream of the studied river section would have negligible effect on the bedload transport in the studied cross section.


2019 ◽  
Vol 290 ◽  
pp. 11007
Author(s):  
Mădălina Delayat ◽  
Maria Lazăr

The purpose of this work is to anticipate the most important consequences generated by the installation of a micro-hydropower plant on mountain rivers, on the main components of the environment, and also to identify and locate the potential disruptions caused by the implementation of these projects. In addition, the authors would like to clarify certain aspects regarding the changes brought to the natural setting, the extent to which they affect the components of the environment, the capacity of nature to withstand these micro-hydropower plants and to naturally or artificially recover after the project is put into operation. Another aim is to establish measures for limiting the modifications that appear in time due to the installation of the micro-hydropower plants in order to ensure the good functioning of the respective plants. The main anthropic factors, that represent the subject of the analysis, act synergically, thus making it difficult to understand the impact of this project on the environment, especially since nature recovers itself under certain circumstances.


Water ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1016
Author(s):  
Luiz Gustavo F. Westin ◽  
Lucas R. Conceição ◽  
Edson C. Bortoni ◽  
André Luís Marques Marcato ◽  
Celso Bandeira de Melo Ribeiro ◽  
...  

In Brazil, the correct measurement of the individual firm energy of a plant is important, since it influences directly the determination of its assured energy which is used to establish contracts between power plants and distribution companies, free consumers, and traders. With increasing technological development and greater reliability in the use of automated techniques for monitoring, the use of the Acoustic Doppler Current Profiler (ADCP), has become a reality in Brazil. The ADCP has many advantages over the traditional techniques used for monitoring flows in gage stations of the national hydrometeorological network. In this context, the purpose of this work is to evaluate the impact of the streamflow rating curve measurement on the evaluation of the firm energy of a hydropower plant. A linear optimization model based on dynamic programming was used to calculate the firm energy and it was considered possible measurement errors in the plant’s inflow values and in the parameters of its polynomials that defines the upward and downward elevation. The results pointed that the two considerations had an impact on the calculated firm energy: the inflow measurements and the streamflow rating curve. Therefore, it is shown the importance of an accurate measurement of inflows for the evaluation of the plant’s firm energy.


Author(s):  
Mohammad Airaj Firdaws Sadiq ◽  
Najib Rahman Sabory ◽  
Mir Sayed Shah Danish ◽  
Tomonobu Senjyu

Afghanistan hosts the Hindu Kush, an extension of the Himalaya mountains that act as water sources for five major rivers flowing through Afghanistan. Most of these rivers provide promise for the construction of water dams and installment of micro hydropower plants (MHP). Although civil war and political strife continue to threaten the country for more than four decades, the Afghan government introduced strategic plans for the development of the country. In 2016 Afghanistan introduced the Afghanistan National Peace and Development (ANPD) Framework at Brussels de-signed to support Afghanistan’s progress towards achieving the SDGs (Sustainable Development Goals). This study discussed the 7th Goal (ensuring access to affordable, reliable, and sustainable energy for all) and 8th Goal (promoting sustained, inclusive and sustainable economic growth, full and productive employment and decent work for all) alignment in Afghanistan. The Afghan gov-ernment acknowledges its responsibility to provide electricity for all of its citizens, but this can only be achieved if the government can secure a reliable source of energy. Afghanistan’s mountainous terrain provides a challenge to build a central energy distribution system. Therefore this study looks for alternative solutions to the energy problems in Afghanistan and explores feasibility of micro-hydropower plant installations in remote areas. This study evaluated socio-economic im-pacts of micro-hydropower plants in the life of average residents. We focused on one example of a micro hydropower plant located in Parwan, conducted interviews with local residents, and gath-ered on-site data. The findings in this study can help policymakers to analyze the effects of devel-opment projects in the social and economic life of residents. It will encourage the government and hopefully the private sector to invest in decentralized energy options, while the country is facing an ever-growing energy demand.


Processes ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 266
Author(s):  
Md Rakibuzzaman ◽  
Sang-Ho Suh ◽  
Hyoung-Ho Kim ◽  
Youngtae Ryu ◽  
Kyung Yup Kim

Discharge water from fish farms is a clean, renewable, and abundant energy source that has been used to obtain renewable energy via small hydropower plants. Small hydropower plants may be installed at offshore fish farms where suitable water is obtained throughout the year. It is necessary to meet the challenges of developing small hydropower systems, including sustainability and turbine efficiency. The main objective of this study was to investigate the possibility of constructing a small hydropower plant and develop 100 kW class propeller-type turbines in a fish farm with a permanent magnet synchronous generator (PMSG). The turbine was optimized using a computer simulation, and an experiment was conducted to obtain performance data. Simulation results were then validated with experimental results. Results revealed that streamlining the designed shape of the guide vane reduced the flow separation and improved the efficiency of the turbine. Optimizing the shape of the runner vane decreased the flow rate, reducing the water power and increasing the efficiency by about 5.57%. Also, results revealed that tubular or cross-flow turbines could be suitable for use in fish farm power plants, and the generator used should be waterproofed to avoid exposure to seawater.


Sign in / Sign up

Export Citation Format

Share Document