Ballistic Performance of Sandwich Composite Armor System

Author(s):  
Shah Alam ◽  
Samhith Shakar

Abstract This study focused on the design, modelling and the analysis of the dynamic response of composite armor system, constructed with Kevlar 29 as front skin, Alumina-ceramic filled in x shaped corrugated structure as core and bottom skin Kevlar 29 and T800S, in terms of residual velocity, energy absorption capacity and limiting velocity. The core cell size, height, thickness, skin thickness, etc., will be varied to get their influence on the impact resistance. The design parameter will be investigated for the sandwich composite armor with various configurations and stacking sequence of Alumina Ceramics, Kevlar 29 and T800S. The sandwich typically consists of front plate, core and backing plate, which will be impacted at different velocities starting at 100m/s till significant armor penetration. The ballistic limit velocity (V50) will be determined from the analysis. The non-linear explicit dynamic analysis and simulation results computed using the software ABAQUS will be validated by experiment. From the data obtained it can be suggested which composite armor has improved impact resistance and performance.

2020 ◽  
Vol 10 (24) ◽  
pp. 9098
Author(s):  
Katarzyna Kośla ◽  
Paweł Kubiak ◽  
Marzena Fejdyś ◽  
Karolina Olszewska ◽  
Marcin Łandwijt ◽  
...  

This article presents the method of preparation a new type of ballistic armor based on hybrid silicone-ceramic (HSC) composites with considerable flexibility. An experimental study on the ballistic behavior of HSC composites connected with soft body armor is presented against FSP.22 fragments. The effect of Al2O3 ceramics on the ballistic performance of HSC composite was investigated, and the fragmentation resistance process of the composite armor combining the HSC composite and soft aramid insert is clarified. Furthermore, impact resistance tests made with a drop tower which allows for a gravity drop of a mass along vertical guides onto a sample placed with an energy of 5 J were performed. The results presented in this paper show that the HSC composites can be successfully used as a hard body armor. However, they do not exhibit the properties of absorbing the impact energy generated during the drop tower tests. The test results show that the ballistic performance of composite armors is influenced by the hardness and Young modulus of ceramics and soft body armor panel. Additionally, in the article, the results of mechanical properties of silicones used for preparation of composites were presented and compiled to determine their role in the performance of impact protection.


Author(s):  
Shah Alam ◽  
Mohammad Nazmus Saquib

Abstract Present day demands composite material with even lighter weight and higher strength for using in aerospace, automobile and defense industries. Due to posing significantly weight saving and higher stiffness attribute, use of sandwich composite structure is the demand of the time. Impact analysis of sandwich composite armor system is necessary to design and develop new armor for defense sectors. The goal of this study is to design, model and analyze the dynamic response of the composite armor system in terms of residual velocity and energy absorption capacity. The design parameters are investigated for different fiber reinforced polymers (High tensile strength Carbon/epoxy, Carbon Fiber/Carbon Nanotube reinforced polymers) as top and bottom skin, with an Aluminum Alloy 7039 corrugated core structure and square prismoid assembled Ceramic (SiC) core centerpieces at different velocities (50 m/s, 100 m/s, 200 m/s, 400 m/s). This non-linear explicit dynamic study is performed using commercial software ABAQUS CAE 2017. Best combination for the composite armor system is suggested based on the results.


2015 ◽  
Vol 1105 ◽  
pp. 62-66 ◽  
Author(s):  
Saud Aldajah ◽  
Yousef Haik ◽  
Kamal Moustafa ◽  
Ammar Alomari

Nanocomposites attracted the attention of scientists due to their superior mechanical, thermal, chemical and electrical properties. This research studied the impact of adding carbon nanotubes (CNTs) to the woven Kevlar laminated composites on the high and low speed impact characteristics. Different percentages of CNTs were added to the woven Kevlar-Vinylester composite materials. An in-house developed drop weight testing apparatus was utilized for the low speed impact testing. Two different concentrations of the CNTs were added to a 15-layer woven Kevlar laminates, 0.32 wt% and 0.8 wt%. The results showed that: The 0.32 wt % CNT sample enhanced the interlaminar strength of the composite without enhancing the energy absorption capacity whereas, the 0.8 wt % CNT sample did not improve the impact resistance of the Kevlar composite.For the high speed impact tests, a bulletproof vest was prepared using woven Kevlar, resin, and CNTs at 1.5 w% percentage. The ballistic shooting was carried out by a professional shooter using a 30 caliber and 9 mm bullets for the tests. The CNT bulletproof sample bounced back the 30 caliber copper alloy bullet with no penetration.


Author(s):  
Joseph M. Gattas ◽  
Zhong You

Honeycomb core sandwich shells are used for many applications, but available unit architectures and global curvatures are limited. Numerous origami-core sandwich shells, known as foldcores, have been proposed as alternatives, but studies into their mechanical performance are few. This paper conducts a preliminary investigation into the impact resistance and energy absorption of single-curved foldcore sandwich shells that utilise Miura-derivative patterns as their core geometry. A numerical analysis on three Miura-derivative core patterns, the Arc-Miura (AM), Non-Developable Miura (ND), and Non-Flat Foldable Miura (NF) patterns, shows that ND and AM-type shells have similar impact resistance to each other, and superior impact resistance to NF-type shells. Prototypes of aluminium ND and AM-type foldcores are constructed and used to validate numerical models. Numerical models were then used to draw comparisons with an over-expanded honeycomb (OX-core) sandwich shell. It was seen that the OX-core had a better energy absorption capacity than either of the foldcores. However the AM-type foldcore possessed superior initial strength, and the ND-type possessed superior response uniformity, attributes that might be exploitable with future research. A brief parametric study on ND-type shells suggested that in general, for a given design radius and density, a foldcore shell configuration with a lower unit cell area-to-height ratio will have a higher energy absorption capability.


2020 ◽  
Vol 978 ◽  
pp. 245-249
Author(s):  
Rajole Sangamesh ◽  
Hiremath Shivashankar ◽  
K.S. Ravishankar ◽  
S.M. Kulkarni

This article focuses on the Finite Element (FE) analysis of the ballistic performance of the polymer composites consisting of natural rubber (NR), glass-epoxy (GE) and glass-rubber-epoxy (GRE) sandwich of different thicknesses (3, 6 and 9 mm) under the impact of the conical nose projectile for a velocity variation of (180, 220 and 260 m / s). FE modeling was carried out in direction to forecast the energy absorption, ballistic limit velocity and failure damage mode of the target materail. The significant influence of thickness, interlayer and sandwiching effect was studied: the lowest ballistic limit was obtained for 3 mm thick GE. Energy absorption capacity of GRE sandwich was highest among the natural rubber and GE. In future, the work can be extended for the experimental validation purpose, so that these polymer composite materials could be utilized to defence sector for bullet-proofing.


2020 ◽  
Vol 23 (16) ◽  
pp. 3446-3455
Author(s):  
Yuyan Sun ◽  
Sheng Wang ◽  
Ziguo Wang

The brick-and-mortar microstructure of nacre is usually considered as a source of inspiration for the development of strong and tough artificial materials. In this article, a nacre-inspired layered-and-staggered structural building ceramic protective covering was fabricated, and the effect of four types of adhesive materials on the ballistic performance of the protective covering was investigated through the ballistic test. The experimental results showed that under the impact of the 7.62-mm ordinary rifle bullet at a speed of 790–820 m/s, the average crater diameter in the concrete targets with protective covering was reduced by 40%–72%, and the penetration depth in the concrete was reduced by 70%–100%, compared with those of unprotected concrete targets. For the concrete targets with protective covering, that adopting the silicone sealant interlayers exhibited a smaller crater area but a maximum penetration depth, while that adopting the epoxy adhesive interlayers showed a larger crater area but a minimum penetration depth. Since the targets with the low-cost polyurethane sealant interlayers presented the smallest crater area and the shallower penetration depth, it can be concluded that the concrete with the protective covering using polyurethane sealant interlayers showed the better projectile impact resistance.


2018 ◽  
Vol 89 (5) ◽  
pp. 711-725 ◽  
Author(s):  
Zherui Guo ◽  
Weinong Chen ◽  
James Zheng

In this study, the impact-face material of a multi-ply soft armor system was varied to different ratios and tested for the effects on the ballistic performance. It is known that the first few layers of multi-ply soft armor material typically fail inelastically near the system ballistic limit and can be replaced with a “sacrificial” material with other more desirable properties. Previous studies have determined that the ballistic performance of these hybrid systems is largely dependent on the amount of high-performance backing material. However, the extent to which the high-performance fabric can be replaced has yet to be fully quantified and examined. Materials of different properties, namely stainless steel mesh, Makrolon® polycarbonate sheets, and cotton, were used as replacement frontal material for 840 d Twaron® panels, and the hybrid panels were impacted by O1 tool steel right-circular cylinder projectiles fired using a single-stage smooth-bore gas gun. Results show that the ballistic performance is maintained up to a frontal material ratio of about 40%, and off-axis material properties play a role in energy dissipation.


2018 ◽  
Vol 32 (19) ◽  
pp. 1840057 ◽  
Author(s):  
Jieng-Chiang Chen

The bending and impacting characteristics of sandwich composites containing corrugated paper (CP) as a core layer are discussed herein. The core layer of the sandwich composite was fabricated with CP-reinforced polylactic acid (PLA) resin. The core layer was then stacked with jute fabric and PLA films on the top and bottom surfaces to fabricate the sandwich composites. Two composites [CP-reinforced PLA composite (CP/PLA composite)] and jute fabric/PLA sandwich composite with CP as a core layer [J/PLA/CP composite] were developed in this study. To manufacture the CP/PLA composite core layer, a dipping bath was used for impregnating the paper with a molten PLA solution. The resin film method combined with a hot press was used to produce the jute fabric/PLA/CP sandwich composites. A material test system (MTS810) was used to study the bending properties of the composites. Further, an IZOD impacting instrument was used to examine the impacting characteristics of the composites. Both the CP/PLA and jute fabric/PLA/CP sandwich composites increase the energy absorption capacity in the impact test.


2021 ◽  
Vol 21 (1) ◽  
pp. 15-19
Author(s):  
Haider Mahdi Lieth ◽  
Ali Sabea Hammood

The aim of this study is to investigate the effect of heat treatments on the impact properties of hot rolled high strength steel and describes the effect of tempering temperature and quenching media on the microstructure, hardness, and impact resistance of plates. In the present study a high strength steel was austenitized at 900 °C with different quenching medium and followed by tempering at 300 °C, 500 °C. After thermal treatments, the values of Charpy impact resistance, hardness, and microscopic structure were evaluated from mechanical and metallographic analysis of metals respectively. The change of mechanical properties and microstructure of the metal with the existence of heat treatment with the ballistic performance of high-strength steel. Experimental results showed that tempering at 500 °C for 2 hours after water quenching medium it provides the best mechanical properties in conjunct on with an improved in microstructure.


Sign in / Sign up

Export Citation Format

Share Document